

Laurelin Python LDAP Client

Laurelin is a pure-Python ORM-esque LDAP client. Check out the user docs to get started. View the
source on GitHub [https://github.com/ashafer01/laurelin].

	User Docs
	Features Overview

	Missing/incomplete features

	Walkthrough
	Navigating

	Getting Started

	LDAP Methods Intro

	LDAPObject Methods Intro

	Relative Searching

	Attributes Dictionaries

	Modify Operations
	Raw modify methods

	Strict modification and higher-level modify functions

	Global Defaults, LDAP instance attributes, and LDAP constructor arguments

	Basic usage examples
	1. Connect to local LDAP instance and iterate all objects

	Simple Search Filters

	Extensions
	Laurelin Extensions

	LDAP Extensions

	LDAPObject Extensions

	Config Files
	Intro

	Global Section

	Extensions Section

	Connection Section

	Objects Section

	Global vs. Connection

	Load Order

	Using Dicts Directly

	Creating Extensions
	Extension System
	Extension Classes

	Schema and Controls Classes

	Depending on Extensions

	Publishing Extensions

	LDAP Extensions

	Controls

	Schema
	Object Classes and Attribute Types

	Matching Rules

	Syntax Rules

	Schema/Controls Registration System

	OIDs

	Validators
	SchemaValidator

	Class Diagram

	Controls
	Using Controls

	Defining Controls

	Changelog
	2.0.4

	2.0.3

	2.0.2

	2.0.1

	2.0.0

	1.5.3

	1.5.2

	1.5.0

	1.4.1

	1.4.0

	1.3.1

	1.3.0

	1.2.0

	1.1.0

	Reference
	laurelin package
	Subpackages
	laurelin.extensions package

	laurelin.ldap package

	Module contents

	Laurelin OID Space
	Namespaces

	Objects

	Testing Setup
	System

	SASL
	SASL config ldif

	Adding sasl user password with

	SASL auth control test case

	LDAPS/StartTLS

Indices and tables

	Index

	Module Index

	Search Page

User Docs

	Features Overview

	Missing/incomplete features

	Walkthrough

	Navigating

	Getting Started

	LDAP Methods Intro

	LDAPObject Methods Intro

	Relative Searching

	Attributes Dictionaries

	Modify Operations

	Raw modify methods

	Strict modification and higher-level modify functions

	Global Defaults, LDAP instance attributes, and LDAP constructor arguments

	Basic usage examples

	1. Connect to local LDAP instance and iterate all objects

Features Overview

	Fully compliant with RFC 4510 and its children.

	Pure Python codebase, meaning that it can be used with Python implementations other than CPython.

	Tested against CPython 2.7, 3.3, 3.4, 3.5, 3.6, PyPy, and PyPy3.

	Simplified filter syntax (optional, standard filter syntax is fully supported and used by default)

	Pythonic attributes input and presentation. It’s just a dictionary.

	Exceedingly easy relative searching. All objects have a suite of search methods which will automatically pass the
object’s DN as the search base. In many cases, you wont have to pass any arguments to search methods.

	Similarly, all objects have a suite of modify methods which allow you to change attributes on already-queried objects
without having to pass their DN again.

	Intelligent modification will never send existing attribute values to the server, nor will it request deletion of
attribute values that do not exist. This prevents many unnecessary server errors. Laurelin will go as far as to query
the object for you before modifying it to ensure you don’t see pointless errors (if you want it to).

	Custom validation. You can define validators which check new objects and modify operations for correctness before
sending them to the server. Since you control this code, this can be anything from a simple regex check against a
particular attribute value, to a complex approval queue mechanism.

	Highly extensible. New methods can easily and safely be bound to base classes.

	Seamless integration of controls. Once defined, these are just new keyword arguments on particular methods, and
additional attributes on the response object.

	Includes Python implementations of standard schema elements. This conveys many benefits:

	Allows changes to be validated before sending the server

	Allows matching rules to be used to compare attribute values locally. Many attribute types are case-insensitive and
have other rules meaning that the standard Python == or in operators won’t tell you what you want to know.
Laurelin makes them work according to these rules.

Missing/incomplete features

Some lesser-used features of the LDAP protocol have not yet been implemented or are incomplete. Check the
GitHub issues [https://github.com/ashafer01/laurelin/issues] to see if your use case is affected. Please add a
comment if so, or open a new issue if you spot anything else. PRs are always welcome.

Walkthrough

Note

I’m assuming that if you’re here, you’re already pretty familiar with LDAP fundamentals. If you don’t know how to
write a search filter, you may want to do some more reading on LDAP before continuing.

Navigating

Just about everything you need for routine user tasks is available in the laurelin.ldap package.
laurelin.ldap.exceptions contains all exception definitions which you may need to import to catch, but even some
common ones are included in laurelin.ldap. Beyond that, you should not need to get into the sub-modules unless
you are defining controls, extensions, schema, or validators.

Built-in extensions are stored in the laurelin.extensions package.

Getting Started

The first thing you should typically do after importing is configure logging and/or warnings. There is a lot of useful
information available at all log levels:

from laurelin.ldap import LDAP

LDAP.enable_logging()
Enables all log output on stderr
It also accepts an optional log level argument, e.g. LDAP.enable_logging(logging.ERROR)
The function also returns the handler it creates for optional further manual handling

import logging

logger = logging.getLogger('laurelin.ldap')
Manually configure the logger and handlers here using the standard logging module
Submodules use the logger matching their name, below laurelin.ldap

LDAP.log_warnings()
emit all LDAP warnings as WARN-level log messages on the laurelin.ldap logger
all other warnings will take the default action

LDAP.disable_warnings()
do not emit any LDAP warnings
all other warnings will take the default action

You can then initialize a connection to an LDAP server. Pass a URI string to the LDAP constructor:

with LDAP('ldap://dir.example.org:389') as ldap:
 # do stuff...

Its also possible, but not reccommended, to not use the context manager:
ldap = LDAP('ldap://dir.example.org:389')

This will open a connection and query the server to find the “base DN” or DN suffix. An empty LDAPObject will
be created with the base DN and stored as the base attribute on the LDAP instance. More on this later. For
now we will briefly cover the basic LDAP interface which may seem somewhat familiar if you have used the standard
python-ldap client before.

LDAP Methods Intro

LDAP.search() sends a search request and returns an iterable over instances of LDAPObject. Basic
arguments are described here (listed in order):

	base_dn - the absolute DN to start the search from

	scope - One of:

	Scope.BASE - only search base_dn itself

	Scope.ONE - search base_dn and its immediate children

	Scope.SUB - search base_dn and all of its descendents (default)

	filter - standard LDAP filter string

	attrs - a list of attributes to return for each object

Use LDAP.get() if you just need to get a single object by its DN. Also accepts an optional list of attributes.

LDAP.add() adds a new object, and returns the corresponding LDAPObject, just pass the full, absolute
DN and an attributes dict

LDAP.delete() deletes an entire object. Just pass the full, absolute DN of the object to delete.

The following methods are preferred for modification, however raw modify methods are also
provided.

All accept the absolute DN of the object to modify, and an attributes dictionary.

LDAP.add_attrs() adds new attributes.

LDAP.delete_attrs() deletes attribute values. Pass an empty values list in the attributes dictionary to delete
all values for an attribute.

LDAP.replace_attrs() replaces all values for the given attributes with the values passed in the attributes
dictionary. Atrributes that are not mentioned are not touched. Passing an empty list removes all values.

For LDAP.delete_attrs() and LDAP.replace_attrs() you can specify the constant LDAP.DELETE_ALL in
place of an empty attribute value list to remove all values for the attribute. For example:

ldap.replace_attrs('cn=foo,dc=example,dc=org', {'someAttribute': LDAP.DELETE_ALL})

If you wish to require the use of the constant instead of an empty list, pass error_empty_list=True to the
LDAP constructor. You can also pass ignore_empty_list=True to silently prevent these from being sent to
the server (this will be the default behavior in a future release).

LDAPObject Methods Intro

Great, right? But specifying absolute DNs all the time is no fun. Enter LDAPObject, and keep in mind the
base attribute mentioned earlier.

LDAPObject inherits from AttrsDict to present attributes. This interface is documented
here.

LDAPObject defines methods corresponding to all of the LDAP methods, but pass the object’s dn
automatically, or only require the RDN prefix, with the object’s dn automatically appended to obtain the absolute
DN.

LDAPObject.search() accepts all the same arguments as LDAP.search() except base_dn and scope.
The object’s own DN is always used for base_dn, and the relative_search_scope is always used as the scope.

LDAPObject.find() is more or less a better LDAPObject.get_child(). It looks at the object’s
relative_search_scope property to determine the most efficient way to find a single object below this one. It will
either do a BASE search if relative_seach_scope=Scope.ONE or a SUBTREE search if
relative_search_Scope=Scope.SUB. It is an error to use this method if relative_search_scope=Scope.BASE.

LDAPObject.get_child() is analagous to LDAP.get() but it only needs the RDN, appending the object’s own DN
as mentioned earlier. (Note that LDAPObject.get() inherits from the native dict.get() [https://docs.python.org/3/library/stdtypes.html#dict.get])

LDAPObject.add_child() is analagous to LDAP.add() again accepting an RDN in place of a full absolute DN.

Use LDAPObject.get_attr() like dict.get() except an empty list will always be returned as default if the
attribute is not defined.

LDAPObject’s modify methods update the server first, then update the local attributes dictionary to match if
successful. LDAPObject.add_attrs(), LDAPObject.delete_attrs(), and LDAPObject.replace_attrs()
require only a new attributes dictionary as an argument, of the same format as for the matching LDAP methods.

LDAPObject Examples:

people = ldap.base.get_child('ou=people')

print(people['objectClass'])
['top', 'organizationalUnit']

people.add_attrs({'description':['Contains all users']})

list all users
for user in people.search(filter='(objectClass=posixAccount)'):
 print(user['uid'][0])

Relative Searching

All objects have LDAPObject.search() and LDAPObject.find() methods which utilize the
relative_search_scope attribute of the object. relative_search_scope can be passed as a keyword to any method
that creates new objects, including LDAP.obj(), LDAP.get(), LDAP.search(), LDAP.add(),
LDAPObject.obj(), LDAPObject.find(), LDAPObject.search(), LDAPObject.get_child(), and
LDAPObject.add_child().

When you create an object from another LDAPObject and you don’t specify the relative_search_scope, it is
automatically inherited from the parent object. When you create an object from an LDAP method, it defaults to
Scope.SUB.

The real win with this feature is when your tree is structured such that you can set this to Scope.ONE as this
conveys significant performance benefits, especially when using LDAPObject.find(). This allows laurelin to
to construct the absolute DN of the child object and perform a highly efficient BASE search.

Attributes Dictionaries

This common interface is used both for input and output of LDAP attributes. In short: dict keys are attribute names, and
dict values are a list of attribute values. For example:

{
 'objectClass': ['posixAccount', 'inetOrgPerson'],
 'uid': ['ashafer01'],
 'uidNumber': ['1000'],
 'gidNumber': ['100'],
 'cn': ['Alex Shafer'],
 'homeDirectory': ['/home/ashafer01'],
 'loginShell': ['/bin/zsh'],
 'mail': ['ashafer01@example.org'],
}

Note that there is an AttrsDict class defined - there is no requirement to create instances of this class
to pass as arguments, though you are welcome to if you find the additional methods provided this class convenient, such
as AttrsDict.get_attr(). Further, it overrides dict special methods to enforce type requirements and enable
case-insensitive keys.

Also note that when passing an attributes dictionary to LDAP.replace_attrs() or LDAP.delete_attrs() it is
legal to specify the constant LDAP.DELETE_ALL in place of a value list.

Modify Operations

Raw modify methods

LDAP.modify() and LDAPObject.modify() work similarly to the modify functions in python-ldap, which in turn
very closely align with how modify operations are described at the protocol level. A list of Mod instances is
required with 3 arguments:

	One of the Mod constants which describe the operation to perform on an attribute:

	Mod.ADD adds new attributes/values

	Mod.REPLACE replaces all values for an attribute, creating new attributes if necessary

	Mod.DELETE removes attributes/values.

	The name of the attribute to modify. Each entry may only modify one attribute, but an unlimited number of entries may
be specified in a single modify operation.

	A list of attribute values to use with the modify operation or the constant LDAP.DELETE_ALL:

	The list may be empty for Mod.REPLACE and Mod.DELETE, both of which will cause all values for the
given attribute to be removed from the object. The list may not be empty for Mod.ADD. You can also specify
the constant LDAP.DELETE_ALL in place of any empty list. If you wish to warn about empty lists or require
the use of the constant, pass warn_empty_list=True or error_empty_list=True to the LDAP
constructor. You can also pass ignore_empty_list=True to silently prevent these from being sent to the server
(this will be the default behavior in a future release).

	A non-empty list for Mod.ADD lists all new attribute values to add

	A non-empty list for Mod.DELETE lists specific attribute values to remove

	A non-empty list for Mod.REPLACE indicates ALL new values for the attribute - all others will be removed.

Example custom modify operation:

from laurelin.ldap.modify import Mod

ldap.modify('uid=ashafer01,ou=people,dc=example,dc=org', [
 Mod(Mod.ADD, 'mobile', ['+1 401 555 1234', '+1 403 555 4321']),
 Mod(Mod.ADD, 'homePhone', ['+1 404 555 6789']),
 Mod(Mod.REPLACE, 'homeDirectory', ['/export/home/ashafer01']),
])

Using an LDAPObject instead:

ldap.base.obj('uid=ashafer01,ou=people').modify([
 Mod(Mod.DELETE, 'mobile', ['+1 401 555 1234']),
 Mod(Mod.DELETE, 'homePhone', LDAP.DELETE_ALL), # delete all homePhone values
])

Again, an arbitrary number of Mod entries may be specified for each modify call.

Strict modification and higher-level modify functions

The higher-level modify functions (add_attrs, delete_attrs, and replace_attrs) all rely on the concept of
strict modification - that is, to only send the modify operation, and to never perform an additional search. By
default, strict modification is disabled, meaning that, if necessary, an extra search will be performed before
sending a modify request.

You can enable strict modification by passing strict_modify=True to the LDAP constructor.

With strict modification disabled, the LDAP modify functions will engage a more intelligent modification
strategy after performing the extra query: for LDAP.add_attrs(), no duplicate values are sent to the server to be
added. Likewise for LDAP.delete_attrs(), deletion will not be requested for values that are not known to exist.
This prevents many unnecessary failures, as ultimately the final semantic state of the object is unchanged with or
without such failures. (Note that with LDAP.replace_attrs() no such failures are possible)

With the LDAPObject modify functions, the situaiton is slightly more complex. Regardless of the
strict_modify setting, the more intelligent modify strategy will always be used, using at least any already-queried
attribute data stored with the object (which could be complete data depending on how the object was originally
obtained). If strict_modify is disabled, however, another search may still be performed to fill in any missing
attributes that are mentioned in the passed attributes dict.

The raw modify functions on both LDAP and LDAPObject are unaffected by the strict_modify
setting - they will always attempt the modify operation exactly as specified.

Global Defaults, LDAP instance attributes, and LDAP constructor arguments

All of the LDAP constructor arguments are set to None by default. In the constructor, any explicitly
is None arguments are set to their associated global default. These are attributes of the LDAP class, have
the same name as the argument, upper-cased, and with a DEFAULT_ prefix (but the prefix wont be repeated).

For example, the server argument has global default LDAP.DEFAULT_SERVER, and default_criticality is
LDAP.DEFAULT_CRITICALITY.

Most arguments also have an associated instance property. A complete table is below:

	Global Default

	LDAP instance attribute

	LDAP constructor keyword

	LDAP.DEFAULT_SERVER

	host_uri

	server

	LDAP.DEFAULT_BASE_DN

	base_dn

	base_dn

	LDAP.DEFAULT_FILTER

	none

	none

	LDAP.DEFAULT_DEREF_ALIASES

	default_deref_aliases

	deref_aliases

	LDAP.DEFAULT_SEARCH_TIMEOUT

	default_search_timeout

	search_timeout

	LDAP.DEFAULT_CONNECT_TIMEOUT

	sock_params[0]

	connect_timeout

	LDAP.DEFAULT_STRICT_MODIFY

	strict_modify

	strict_modify

	LDAP.DEFAULT_REUSE_CONNECTION

	none

	reuse_connection

	LDAP.DEFAULT_SSL_VERIFY

	ssl_verify

	ssl_verify

	LDAP.DEFAULT_SSL_CA_FILE

	ssl_ca_file

	ssl_ca_file

	LDAP.DEFAULT_SSL_CA_PATH

	ssl_ca_path

	ssl_ca_path

	LDAP.DEFAULT_SSL_CA_DATA

	ssl_ca_data

	ssl_ca_data

	LDAP.DEFAULT_FETCH_RESULT_REFS

	default_fetch_result_refs

	fetch_result_refs

	LDAP.DEFAULT_FOLLOW_REFERRALS

	default_follow_referrals

	follow_referrals

	LDAP.DEFAULT_SASL_MECH

	default_sasl_mech

	default_sasl_mech

	LDAP.DEFAULT_SASL_FATAL_DOWNGRADE_CHECK

	sasl_fatal_downgrade_check

	sasl_fatal_downgrade_check

	LDAP.DEFAULT_CRITICALITY

	default_criticality

	default_criticality

	LDAP.DEFAULT_VALIDATORS

	validators

	validators

	LDAP.DEFAULT_WARN_EMPTY_LIST

	warn_empty_list

	warn_empty_list

	LDAP.DEFAULT_ERROR_EMPTY_LIST

	error_empty_list

	error_empty_list

	LDAP.DEFAULT_IGNORE_EMPTY_LIST

	ignore_empty_list

	ignore_empty_list

	LDAP.DEFAULT_FILTER_SYNTAX

	default_filter_syntax

	filter_syntax

	LDAP.DEFAULT_BUILT_IN_EXTENSIONS_ONLY`

	none public

	built_in_extensions_only

The LDAP instance attributes beginning with default_ are used as the defaults for corresponding arguments
on other methods. default_sasl_mech is used with LDAP.sasl_bind(), default_criticality is the default
criticality of all controls, the other default_ attributes are used with LDAP.search().

The ssl_ prefixed instances attributes are used as the defaults for LDAP.start_tls(), as well as the socket
configuration when connecting to an ldaps:// socket.

Basic usage examples

1. Connect to local LDAP instance and iterate all objects

from laurelin.ldap import LDAP

with LDAP('ldapi:///') as ldap:
 ldap.sasl_bind()
 for obj in ldap.base.search():
 print(obj.format_ldif())

LDAP.sasl_bind() defaults to the EXTERNAL mechanism when an ldapi: URI is given, which uses the current
user for authorization via the unix socket (Known as “autobind” with 389 Directory Server)

Simple Search Filters

Laurelin provides an alternate syntax for search filters that is much simpler than the standard, RFC 4515-compliant,
filter syntax. In short, it is a hybrid between SQL logic expressions and standard LDAP filter comparisons.

In the simplest case of a single comparison, the two syntaxes are identical:

	Standard

	Simple

	(gidNumber=100)

	(gidNumber=100)

But when it comes to expressing logic, the Laurelin simplified filter differs quite a bit:

	Standard

	Simple

	(&(gidNumber<=1000)(!(memberUid=*)))

	(gidNumber<=1000) AND NOT (memberUid=*)

Feel free to include parentheses in your simple filters if it helps clarify the logic:

	Simple (without extra parens)

	Simple (equivalent with extra parens)

	(gidNumber<=1000) AND NOT (memberUid=*)

	(gidNumber<=1000) AND (NOT (memberUid=*))

Some more equivalent standard and simple filters:

	Standard

	Simple

	(&(abc=foo)(|(def=bar)(ghi=jkl)))

	(abc=foo) AND ((def=bar) OR (ghi=jkl))

	(|(abc=foo)(&(def=bar)(ghi=jkl)))

	(abc=foo) OR (def=bar) AND (ghi=jkl)

	(&(abc=foo)(|(def=bar)(ghi=jkl))(xyz=abc))

	(abc=foo) AND ((def=bar) OR (ghi=jkl)) AND (xyz=abc)

By default, Laurelin will interpret your filters with the unified filter syntax, meaning you can embed a full
RFC 4515-compliant filter anywhere you see a simple comparison in the above examples. This includes as the only element
in the filter, making this fully backwards compatible with RFC 4515 standard filters.

Currently available syntaxes are FilterSyntax.STANDARD to limit to RFC 4515, FilterSyntax.SIMPLE to limit to
only simple comparisons within SQL-style logic, and the default FilterSyntax.UNIFIED.

If you wish to restrict the syntax, you can do one of the following:

	Pass filter_syntax= to LDAP.search() or any other search method:

from laurelin.ldap import LDAP, FilterSyntax

with LDAP() as ldap:
 search = ldap.search('o=foo', filter='(abc=foo) AND (def=bar)', filter_syntax=FilterSyntax.SIMPLE)

	Pass filter_syntax= to the LDAP constructor:

from laurelin.ldap import LDAP, FilterSyntax

with LDAP(filter_syntax=FilterSyntax.SIMPLE) as ldap:
 search1 = ldap.search('o=foo', filter='(abc=foo) AND (def=bar)')
 search2 = ldap.search('o=bar', filter='(xyz=foo) OR (abc=bar)')

	Set the global default LDAP.DEFAULT_FILTER_SYNTAX before instantiating any LDAP instances:

from laurelin.ldap import LDAP, FilterSyntax

LDAP.DEFAULT_FILTER_SYNTAX = FilterSyntax.STANDARD

with LDAP() as ldap:
 search = ldap.search('o=foo', filter='(&(abc=foo)(def=bar))')

with LDAP('ldap://localhost:10389') as ldap:
 search = ldap.search('o=bar', filter='(|(xyz=foo)(abc=bar))')

	Do either of the two above using Config Files.

Note

How is this possible?

Doesn’t the filter get sent to the server and parsed there like SQL? No! In LDAP, it is up to the client to parse
the filter string into a set of objects that are encoded and sent to the server. If you’ve got any other ideas
for alternate filter syntaxes, please submit a PR!

Extensions

The following class documents show names of available extensions on different instances.

Laurelin Extensions

Every defined extension has a property in this class. An instance is accessible at laurelin.ldap.extensions.
For example, to require the base schema:

from laurelin.ldap import extensions

extensions.base_schema.require()

LDAP Extensions

These properties are available on LDAP instances.

LDAPObject Extensions

These properties are available on LDAPObject instances.

Config Files

	Intro

	Global Section

	Extensions Section

	Connection Section

	Objects Section

	Global vs. Connection

	Load Order

	Using Dicts Directly

Intro

Laurelin config files may be YAML or JSON formatted out of the box. You can also supply your own custom decoding
function to handle arbitrary formats. The important part is that the file contents decode to a dictionary. Below is an
example YAML file:

global:
 SSL_CA_PATH: /etc/ldap/cacerts
 IGNORE_EMPTY_LIST: true
extensions:
 - laurelin.extensions.descattrs
 - laurelin.extensions.netgroups
connection:
 server: ldap://dir01.example.org
 start_tls: true
 simple_bind:
 username: testuser
 passowrd: testpassword
 connect_timeout: 30
objects:
 - rdn: ou=people
 tag: posix_user_base
 - rdn: ou=groups
 tag: posix_group_base
 - rdn: ou=netgroups
 tag: netgroup_base

You can load and apply such a file by using config.load_file(). If a connection section was specified, a new
connection will be established and returned from the function.

Global Section

Each key in the global section must correspond to one of the DEFAULT_ prefixed attributes on LDAP. As you
can see in the example, the DEFAULT_ prefix is optional. Not demonstrated by the example is that keys are
case-insensitive (that is, they will be upper-cased for you).

Extensions Section

This is simply a list of extension module names which will get activated when the config file is loaded.

Connection Section

Keys here are mostly corresponding to LDAP constructor arguments, however there are a few special ones:

	start_tls A boolean option, if set to true will execute LDAP.start_tls() after opening the connection

	simple_bind A dictionary of parameters to pass to LDAP.simple_bind()

	sasl_bind A dictionary of parameters to pass to LDAP.sasl_bind()

Note that simple_bind and sasl_bind are both optional, and mutually exclude each other. In other words, it is an
error to specify both of these keys.

Note that start_tls will always occur before any bind (if requested).

Objects Section

Note

You cannot specify objects without also specifying a connection

This is a list of dicts where keys correspond to LDAP.obj() or LDAPObject.obj() arguments. You must
specify exactly one of dn or rdn. If dn is specified, this will be taken as the full, absolute DN of the
object, and parameters will be passed to LDAP.obj(). If rdn is specified, this will be taken as the RDN
relative to the connection’s base object, or the base of the tree, and parameters will be passed to
LDAPObject.obj().

Also required for all objects is the tag key. This is how you will access created objects. For example, to access
the first object in the config file example above:

ldap = config.load_file('/path/to/file.yaml')
posix_users = ldap.tag('posix_user_base')

Its important to note that the server is not queried when creating these objects, so they will not have any local
attributes. If you require local attributes, you can all LDAPObject.refresh() on the object.

Global vs. Connection

As mentioned elsewhere in the docs, there is a global config parameter associated with every connection parameter,
meaning in a config file you can define your connection parameters in either section. This does not have the exact
same end functionality, though. In general you should prefer connection for the following reasons:

	The connection will not be created when the config file is loaded if you configure everything in global

	You cannot define objects without defining a connection

	You cannot specify start_tls or bind parameters globally

However there are cases where it may be desirable to specify everything as a global default. Taking this approach allows
you to use the LDAP constructor with as few as zero arguments after loading the config. You can still bind as
usual by calling LDAP.simple_bind() or LDAP.sasl_bind() on the connection. You can also manually create
objects with obj() methods.

Load Order

Sections are loaded and applied in a specific order:

	global

	extensions

	connection

	objects

You can specify sections in whatever order is convenient in your file. They will always be used in the above order.

Using Dicts Directly

If you already have your configuration parameters in one or more dictionaries, you can apply them directly without
going through the file interface. You can pass a dictionary of the same format as in a config file to
config.load_config_dict(). Like load_file(), this will establish and return the new connection if one was
defined.

You can also use the other config methods to apply dictionary configurations piecemeal. These process fragments
of the larger config dictionary. Check the reference docs for details if you need to do this.

Creating Extensions

	Extension System

	Extension Classes

	Schema and Controls Classes

	Depending on Extensions

	Publishing Extensions

	LDAP Extensions

	Controls

	Schema

	Object Classes and Attribute Types

	Matching Rules

	Syntax Rules

	Schema/Controls Registration System

	OIDs

	Validators

	SchemaValidator

	Class Diagram

The most important thing to note about “extensions” is that they are not necessarily LDAP extensions. In laurelin, they
are simply a module that does any combination of: defining new schema elements, defining new controls, or defining new
methods to be attached to LDAP or LDAPObject.

Extension System

Extensions live in any importable module or package. They must at minimum define a class called LaurelinExtension as
follows:

from laurelin.ldap import BaseLaurelinExtension

class LaurelinExtension(BaseLaurelinExtension):
 NAME = 'some_name'

You’ll notice the BaseLaurelinExtension here - this is required. It is one of many weapons at your disposal.

Extension Classes

All of these share the same common end-user interface of being exposed as either a property or dynamic attribute on some
other instance that the user typically will already use normally. Which class they are attached to depends on the name
and base class of the defined extension class. Whether they are accessible as a property (with IDE auto-complete
support) or a dynamic attribute depends on how the extension is loaded and defined (more below), but the user API is
unchanged either way.

	class LaurelinExtension(BaseLaurelinExtension):

	As described above, this is where you define the name of the property or dynamic attribute where all instances of
these extension classes can be accessed. One instance of this class is created per Python interpreter when the
extesion is first added or used (more on this later) and it is accessible to users at
laurelin.ldap.extensions.<NAME>.

	class LaurelinLDAPExtension(BaseLaurelinLDAPExtension):

	This is where you can bind methods, attributes, etc. that will be attached to LDAP by way of property or
dynamic attribute with name corresponding to your LaurelinExtension.NAME. You can access the parent
LDAP instance at self.parent. Up to one instance is created per LDAP instance when the
property or dynamic attribute is first accessed on a particular instance.

	class LaurelinLDAPObjectExtension(BaseLaurelinLDAPObjectExtension):

	This is where you can bind methods, attributes, etc. that will be attached to LDAPObject by way of property
or dynamic attribute with name corresponding to your LaurelinExtension.NAME. You can access the parent
LDAPObject instance at self.parent. Up to once instance is created per LDAPObject instance
when the property or dynamic attribute is first accessed on a particular instance.

Schema and Controls Classes

These two simply attempt to register all public attributes defined within them as schema elements or controls. More
about actually defining these below, the class signatures should look like this, though:

	class LaurelinSchema(BaseLaurelinSchema):

	Define all SyntaxRule and EqualityMatchingRule classes as local classes within this class.
Directly instantiate ObjectClass and AttributeType with standard spec strings and assign them
to class attributes.

	class LaurelinControls(BaseLaurelinControls):

	Define all Control classes as local classes within this class.

Note that the placement of schema and control definitions is fairly flexible and are not restricted to these 2 classes
(but this kind of organization or a variation upon it is suggested). See the Schema and Controls sections below for more
details.

Also note that if your schema depends on the base schema, you must require it at the top of your extension like so:

from laurelin.ldap import extensions

extensions.base_schema.require()

Depending on Extensions

Extension authors may want to duplicate and tailor some or all of this information in their own documentation for users.

There are two ways laurelin can be made aware of extensions:

	By passing a module name string to add_extension(). This will cause the extension class instances to be
made available as dynamic attributes.

	By being defined in Extensible.AVAILABLE_EXTENSIONS. A script will automatically generate properties that
are inherited by the appropriate parent class (LDAP or LDAPObject). This has the benefit that
IDEs can auto-complete extension instances if the extension is installed (tested with PyCharm). Also defined with
your extension is the string module name, so your users do not need to copy this themselves, as well as the pip
package name, which will be included in the exception if users attempt to use your extension when its not installed.

There are clear pros and cons to each approach, and extension authors are welcome to instruct users to take either
approach. #1 may be preferred during development, or if you do not intend to publish your extension publicly.

One caveat to #2 above if you define schema or controls, is your users will need to explicitly require your extension
like so:

from laurelin.ldap import extensions

extensions.<NAME>.require()

This happens implicitly in the following situations:

	When add_extension() is called, as in #1 above

	When the user accesses your <NAME> extension property/attribute on LDAP or LDAPObject, if you
defined any extensions to those classes

	Technically happens implicitly when extensions.<NAME> is accessed, so if you define any other user-exposed
attributes on your LaurelinExtension class that all users must access, you can instruct them to use that
instead.

So if you require any of these of your users by way of your own documentation, you can also have them skip the
explicit require() call.

Regardless of whether your extension is added or defined, your users will need to explicitly add the dependency to their
own package. Laurelin will never depend on an extension module, and only built-in extensions are guarnateed to be
available.

Publishing Extensions

If you are planning on defining any standard LDAP extensions, schema, or controls, I suggest packaging your module under
laurelin.extensions, which is a
namespace package [https://setuptools.readthedocs.io/en/latest/setuptools.html#namespace-packages]. This allows an
exceedingly simple and easy path to eventual merging in as a built-in extension. You are welcome to package under
any importable module, though.

If you choose to instruct your users to add your extension, please be sure to write clear and accessible documentation
for them.

If you choose to define your extension, please submit a pull request on GitHub. You should include ONLY a ~5 line
addition to Extensible.AVAILABLE_EXTENSIONS. The dict key should match your LaurelinExtension.NAME.
The keys in the sub-dictionary should be pretty self-explanatory. Below is a contrived example patch:

diff --git a/laurelin/ldap/extensible/base.py b/laurelin/ldap/extensible/base.py
index 593e64b..bd7b233 100644
--- a/laurelin/ldap/extensible/base.py
+++ b/laurelin/ldap/extensible/base.py
@@ -132,6 +132,11 @@ class Extensible(object):
 'pip_package': None, # built-in
 'docstring': 'Built-in extension defining standard paged results control for search'
 },
+ 'some_ext': {
+ 'module': 'your.extension.module',
+ 'pip_package': 'laurelin-some-ext',
+ 'docstring': 'A contrived example laurelin extension'
+ },
 }

 ADDITIONAL_EXTENSIONS = {}

Please keep your docstrings short. They will be rendered in laurelin’s documentation. You may include a Sphinx-formatted
shortlink to your own docs.

If you have any questions, problems, or concerns, please open an issue on GitHub.

LDAP Extensions

When defining an actual LDAP extension with an OID and requiring server support, you’ll create the laurelin extension as
shown above, but you’ll be calling the LDAP.send_extended_request() method from your extension methods within
your LaurelinLDAPExtension or LaurelinLDAPObjectExtension.

As you can see, this accepts the OID of the LDAP extension and an optional request value. You can also pass control
keywords, and the require_success keyword, which will automatically check for success on the final extendedResponse
message (and raise an LDAPError on failure).

If your LDAP extension expects intermediateResponse messages, you can iterate the return from
LDAP.send_extended_request(). You can also call ExtendedResponseHandle.recv_response() to get only one
message at a time (preferred to iteration if you only expect the one extendedResponse message).

The built-in LDAP.who_am_i() method is an excellent example of a simple LDAP extension:

from laurelin.ldap import LDAP
from laurelin.ldap.protoutils import get_string_component

def who_am_i(self):
 handle = self.send_extended_request(LDAP.OID_WHOAMI, require_success=True, **ctrl_kwds)
 xr, res_ctrls = handle.recv_response()
 return get_string_component(xr, 'responseValue')

As a laurelin extension this might look like:

from laurelin.ldap import BaseLaurelinLDAPExtension

...

class LaurelinLDAPExtension(BaseLaurelinLDAPExtension):
 def who_am_i(self):
 handle = self.parent.send_extended_request(...)
 # ...

Note the use of self.parent to access LDAP.send_extended_request().

Controls

Extensions may wish to define controls for use on existing methods. You will need to define one or more
Control classes, see Defining Controls for more information about this. The important part for the
purposes of this document is where to place those class definitions in your extension module.

You must define a subclass of LaurelinTransiter, or the more semantically appropriate but functionally
identical BaseLaurelinControls. Your subclass must then have local Control subclasses defined within
it. For example:

from laurelin.ldap import BaseLaurelinExtension, BaseLaurelinControls, Control

class LaurelinExtension(BaseLaurelinExtension):
 NAME = 'your_name'

class LaurelinControls(BaseLaurelinControls):
 class YourControl(Control):
 method = ('search',)
 keyword = 'some_kwd'
 REQUEST_OID = '1.2.3.4'

Note that controls may alternatively be defined directly in your LaurelinExtension class.

Schema

Extensions may be associated with a set of new schema elements, including object classes, attribute types, matching
rules, and syntax rules. Once defined, these will get used automatically by other parts of laurelin, including the
SchemaValidator, and for comparing items in attribute value lists within an LDAPObject.

Like controls, all extension schema elements must be defined as attributes on a subclass of
LaurelinTransiter. The more semantically appropriate BaseLaurelinSchema is provided as well. You
can use these base classes to organize your schema and controls however appropriate. Alternatively, you may also define
schema elements directly in your LaurelinExtension class.

If your schema depends on the laurelin built-in base schema, you must explicitly call
laurelin.ldap.extensions.base_schema.require() near the top of your extension module.

Below is a simple example of defining a new object class depending on the base schema:

from laurelin.ldap import BaseLaurelinExtension, BaseLaurelinControls, ObjectClass, extensions

extensions.base_schema.require()

class LaurelinExtension(BaseLaurelinExtension):
 NAME = 'your_name'

class LaurelinSchema(BaseLaurelinSchema):
 MY_COMPANY_USER = ObjectClass('''
 (1.2.3.4 NAME 'myCompanyUser' SUP inetOrgPerson STRUCTURAL
 MUST (companyAttribute $ anotherAttribute)
 MAY description
 ''')

The superclass of inetOrgPerson makes this example require the base schema. All schema instance elements must be
defined as class attributes in this manner (for object classes and attribute types), and all class elements must be
defined below the LaurelinSchema class (for syntax rules and matching rules).

Object Classes and Attribute Types

Creating object classes and attribute types is very simple. Just take the standard LDAP specification and pass it to the
appropriate class constructor. Examples from the netgroups extension:

from laurelin.ldap.objectclass import ObjectClass
from laurelin.ldap.attributetype import AttributeType

 ObjectClass('''
 (1.3.6.1.1.1.2.8 NAME 'nisNetgroup' SUP top STRUCTURAL
 MUST cn
 MAY (nisNetgroupTriple $ memberNisNetgroup $ description))
 ''')

 AttributeType('''
 (1.3.6.1.1.1.1.14 NAME 'nisNetgroupTriple'
 DESC 'Netgroup triple'
 EQUALITY caseExactMatch
 SYNTAX 1.3.6.1.1.1.0.0)
 ''')

Matching Rules

Defining matching rules takes a little more effort. Matching rules must subclass EqualityMatchingRule.
Required class attributes include:

	OID - the numeric OID of this rule (see section below about OIDs).

	NAME - the name of the rule. Must also be globally unique. This is usually how matching rules are referenced in
attribute type specs (see caseExactMatch in above example).

	SYNTAX - the numeric OID of the syntax rule that assertion values must match.

Matching rule classes may also optionally define the following attribute:

	prep_methods - a sequence of callables that will be used to prepare both the attribute value and assertion value
for comparison. These will typically be defined in laurelin.ldap.rfc4518. The initial attribute/assertion value
will be passed into the first item in the sequence, and the return from each is passed into the next item.

If you prefer, you can also override the MatchingRule.prepare() method on your matching rule class.

You may also wish to override EqualityMatchingRule.do_match(). This is passed the two prepared values and must
return a boolean. Overriding MatchingRule.match() is not recommended.

Below is an example matching rule from laurelin.extensions.base_schema:

from laurelin.ldap.rules import EqualityMatchingRule
from laurelin.ldap import rfc4518

 class numericStringMatch(EqualityMatchingRule):
 OID = '2.5.13.8'
 NAME = 'numericStringMatch'
 SYNTAX = '1.3.6.1.4.1.1466.115.121.1.36'
 prep_methods = (
 rfc4518.Transcode,
 rfc4518.Map.characters,
 rfc4518.Normalize,
 rfc4518.Prohibit,
 rfc4518.Insignificant.numeric_string,
)

Syntax Rules

Syntax rules must subclass SyntaxRule, although in almost all cases you can use RegexSyntaxRule. If
you do not use a regular expression, you must override SyntaxRule.validate(), which receives a single string
argument, and must raise InvalidSyntaxError when it is incorrect.

In all cases, you must define the following attributes on your syntax rule class:

	OID - the numeric OID of the rule (See section below about OIDs).

	DESC - a brief description of the rule. This is mainly used in exception messages.

Regex syntax rules must also define:

	regex - the regular expression.

Below are examples from laurelin.extensions.base_schema:

from laurelin.ldap.rules import SyntaxRule, RegexSyntaxRule
from laurelin.ldap.exceptions import InvalidSyntaxError
import six

 class DirectoryString(SyntaxRule):
 OID = '1.3.6.1.4.1.1466.115.121.1.15'
 DESC = 'Directory String'

 def validate(self, s):
 if not isinstance(s, six.string_types) or (len(s) == 0):
 raise InvalidSyntaxError('Not a valid {0}'.format(self.DESC))

 class Integer(RegexSyntaxRule):
 OID = '1.3.6.1.4.1.1466.115.121.1.27'
 DESC = 'INTEGER'
 regex = r'^-?[1-9][0-9]*$'

Schema/Controls Registration System

Schema and controls go through an identical 2-step registration system. The LaurelinTransiter class first
stores a list of all schema and control attributes mapped to the module name that defined them. This occurs when the
class is defined, i.e. at import time.

The LaurelinRegistrar.require() method then invokes the .register() method on each schema element or control
class defined in the same module. This causes the element to be mapped according to its class, name, and OID - which are
ultimately what is needed for laurelin to make use of the object.

OIDs

Controls and schema elements all need an OID to be defined. You should obtain a Private Enterprise Number [https://pen.iana.org/pen/PenApplication.page] from IANA for any OIDs that you publish to the internet (and probably
for any that you don’t as well). This is completely free and usually only takes a few days to process.

The OID you get from IANA should be used as the root of your namespace, and you can define the structure below it as you
see fit.

Validators

Validators must subclass Validator. The public interface includes Validator.validate_object() and
Validator.validate_modify(). You will usually just want to override these, however they do include a default
implementation which checks all attributes using the abstract Validator._validate_attribute(). Check method docs
for more information about how to define these.

When defining validators in your extension, you can ensure your users don’t need to import the module again by attaching
the class to your LaurelinExtension class like so:

from laurelin.ldap import BaseLaurelinExtension, Validator

class LaurelinExtension(BaseLaurelinExtension):
 NAME = 'my_ext'

 class MyValidator(Validator):
 # ...
 pass

Users can then access it like so:

from laurelin.ldap import LDAP, extensions

with LDAP('ldaps://dir.example.org', validators=[extensions.my_ext.MyValidator]) as ldap:
 # do stuff

SchemaValidator

Laurelin ships with SchemaValidator which, when applied to a connection, automatically checks write operations
for schema validity before sending the request to the server. This includes any schema you define in your extensions.
Users can enable this like so:

from laurelin.ldap import LDAP
from laurelin.ldap.schema import SchemaValidator

with LDAP('ldaps://dir.example.org', validators=[SchemaValidator]) as ldap:
 # do stuff

Class Diagram

The extension subsystem has several interconnecting classes. Blue are auto-generated classes, and green are defined in
extension modules. Unlabeled arrows indicate class inheritance or are self-explanatory.

[image: Laurelin extensions class and instance diagram]

Controls

	Using Controls

	Defining Controls

Many LDAP users may be unfamiliar with controls. RFC4511 defines controls as “providing a mechanism whereby the
semantics and arguments of existing LDAP operations may be extended.” In other words, they can:

	Instruct the server to process a method differently

	Add new arguments to methods to control the altered processing

	Add additional data to the response to a method call

It is important to note that both the server and client must mutually support all controls used. Laurelin will
automatically check for server support when using controls.

Using Controls

Once controls have been defined, they are very easy to use. Each control has a keyword
and optionally a response_attr.

The keyword can be passed as a keyword argument to specific methods. The value type and format is up to the control
implementation. Whatever value the control expects can be wrapped in critical or optional to declare
the criticality of the control.

If defined, the response_attr will be set as an attribute on the object returned from the method call.

For search response controls, the control value will be set on the individual LDAPObject if it appeared on the
associated search result entry. If it appeared on the search results done message, the control value will be set on the
iterator object.

In the highly unusual case that a response control is set on a search result reference message, the control values will
be inaccessible if fetch_result_refs is set to True. A warning will be issued in this case.

If fetch_result_refs is set to False, the response control values will be set on the SearchReferenceHandle
that is yielded from the results iterator.

An LDAPSupportError will be raised if the control is marked critical and the server does not support it.

Defining Controls

Controls must subclass Control. As soon as they are defined as a subclass of Control, they are ready to use. Controls
must define at least:

	Control.method, a tuple of method names that this control supports. Current method names are bind,
search, compare, add, delete, mod_dn, modify, and ext (extended request). Note that these method
names do not necessarily correspond directly to LDAP method names. Even when they do, other methods may
call the base method and pass through control keywords. For example, LDAPObject.find() ends up passing any
control keywords through into LDAP.search() (which matches the search method). The bind method is used by
both LDAP.simple_bind() and LDAP.sasl_bind().

	Control.keyword, the keyword argument to be used for the request control.

	Control.REQUEST_OID the OID of the reuqest control. If the control has criticality, the OID must be listed
in the supportedControl attribute of the root DSE of the server at runtime.

If there is an associated response control, also define the following:

	Control.response_attr, the name of the attribute which will be set on objects returned from the method.

	Control.RESPONSE_OID the OID of the response control. This may be equal to Control.REQUEST_OID
depending on the spec. This must match the controlType of the response control to be properly set.

Most controls will not need to override methods if only strings are used for request and response values. However, if it
is desirable to use a more complex data structure as a control value, you can override the Control.prepare()
method to accept this structure as its first argument. You will need to process this into a single string for
transmission to the server, and pass it into, and return, the base Control.prepare(). The second argument is a
boolean describing criticality, and must also be passed into the base method.

To return a more complex value for the response, you can override the Control.handle() method. This will be
passed the response control value string, and the return will be assigned to the response_attr attribute on the
returned object.

Changelog

2.0.4

Released 2019.05.30

	Switch to an internal pyasn1

	Fix issue with binary data

2.0.3

Released 2019.02.14

	No code changes. Clarified stability guarantee for laurelin.extensions

2.0.2

Released 2019.02.12

	Fix: make extension requirements align with specification

	Update documentation with OID information

2.0.1

Released 2019.02.09

	Fix: Correctly request no attributes be returned for LDAP.exists()

2.0.0

Released 2018.11.17

	Empty lists in a replace or delete modify operation are now ignored by default

	To delete all attribue values in a replace or delete, use DELETE_ALL introduced in
version 1.2.0.

	To restore the previous functionality, you can set the global default
LDAP.DEFAULT_IGNORE_EMPTY_LIST = False, or restore on a per-connection basis by
passing ignore_empty_list=False to the LDAP() constructor.

	The rationale for this change is a) improved semantics, and b) eliminates unexpected
behavior in cases like applying a filter to determine a list to remove (which may result
in an empty list, meaning no items should be removed)

	Extensions API has been changed, both for users and creators of extensions:

	Rather than attaching new attributes directly to the LDAP or LDAPObject class, a
property (or dynamic attribute) is made available on those classes for each
extension, which provides access to an object exposing those same attributes.

	Many extension attributes have been renamed to avoid semantic duplication introduced
by this change. For example ldap.get_netgroup_users() should be replaced with
ldap.netgroups.get_users().

	The descattrs extension has been changed slightly to work better with these new
changes. Description attributes can now be accessed and modified like so (no additional
imports necessary):

o = ldap.base.obj('cn=metadata')
print(o.descattrs['some_attr'])
['value1', 'value2']

o.descattrs.add({'some_attr': ['value3']})
print(o.descattrs['some_attr'])
['value1', 'value2', 'value3']

these also work now:

'some_attr' in o.descattrs

for attr in o.descattrs:

	Docs have been updated with information about creating extensions.

	Internal changes around loading of schema elements and controls

	Base schema changes:

	The base schema will now be automatically loaded when needed. At present, this includes:

	When checking for the presence of a value in an attribute list

	When a SchemaValidator is initialized

	When the netgroups extension is used

	The base schema is no longer defined in laurelin.ldap.schema. It now is housed in
a built-in extension. If previously using import laurelin.ldap.schema or similar
to enable client-side schema checking, this should be replaced with something like the
following:

from laurelin.ldap import extensions
extensions.base_schema.require()

However, as stated above, this will not be necessary for almost all use cases.

	Properly documented the public API definition

1.5.3

Release 2018.08.30

	Add python 3.7 support

1.5.2

Released 2018.06.15

1.5.1 was built off of the wrong branch and will be removed.

	Minor fix: Added FilterSyntax to all

	Doc update: added dependent info section to readme

1.5.0

Released 2018.06.09

	Added new simple filter syntax

	Switched default filter syntax to UNIFIED which should be backwards compatible with standard RFC 4515 filters

Special thanks to @jpypi for authoring the new grammar

1.4.1

Released 2018.05.31

	Fix: Checked for failed import of AF_UNIX to improve Windows support

	Fix: Required latest pure-sasl

1.4.0

Released 2018.05.29

	Validation updates:

	Added LDAP.disable_validation() which creates a context with any or all validators skipped

	Added an ldap_conn attribute to validator instances to allow validators to query the server

	Allowed passing a class as well as an instance with the validators constructor keyword

	Greatly improved handling of unsolcitied messages (message ID 0)

	Fix: enforce maximum length for attribute types

	Fix: SASL auth issues with pure-sasl 0.5.1+

1.3.1

Released 2018.04.01

	Fixed logic bug in SchemaValidator when an object has two or more object classes that require one or more
of the same attributes

	Fixed: allowed string some.module.Class specification for validators in config files

1.3.0

Released 2018.03.22

	Added config file support, see laurelin.ldap.config

	Fixed: ensured extensions can be safely activated multiple times

	Fixed: Mod constants repr updated for consistency

1.2.0

Released 2018.03.16

	Add DELETE_ALL to use as an attribute value list with modify, replace_attrs, and delete_attrs

	Added new constructor keywords to alter the behavior of empty value lists for modify, replace_attrs, and delete_attrs:

	ignore_empty_list to silently ignore empty value lists and not send them to the server. This will be enabled by
default in a future release.

	error_empty_list to raise an exception when an empty value list is passed.

	warn_empty_list to emit a warning when an empty value list is passed.

1.1.0

Released 2018.03.12

Initial stable API.

Reference

	laurelin package
	Subpackages
	laurelin.extensions package

	laurelin.ldap package

	Module contents

laurelin package

Subpackages

	laurelin.extensions package
	Submodules
	laurelin.extensions.base_schema module

	laurelin.extensions.descattrs module

	laurelin.extensions.netgroups module

	laurelin.extensions.pagedresults module

	Module contents

	laurelin.ldap package
	Submodules
	laurelin.ldap.base module

	laurelin.ldap.config module

	laurelin.ldap.exceptions module

	laurelin.ldap.ldapobject module

	laurelin.ldap.protoutils module

	Module contents

Module contents

laurelin.extensions package

Submodules

	laurelin.extensions.base_schema module

	laurelin.extensions.descattrs module

	laurelin.extensions.netgroups module

	laurelin.extensions.pagedresults module

Module contents

laurelin.extensions.base_schema module

laurelin.extensions.descattrs module

laurelin.extensions.netgroups module

laurelin.extensions.pagedresults module

laurelin.ldap package

Submodules

	laurelin.ldap.base module

	laurelin.ldap.config module

	laurelin.ldap.exceptions module

	laurelin.ldap.ldapobject module

	laurelin.ldap.protoutils module

Module contents

laurelin.ldap.base module

laurelin.ldap.config module

laurelin.ldap.exceptions module

	
exception laurelin.ldap.exceptions.Abandon

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Can be raised to cleanly exit a context manager and abandon unread results

	
exception laurelin.ldap.exceptions.ConnectionAlreadyBound

	Bases: laurelin.ldap.exceptions.InvalidBindState

Only raised by LDAP.*Bind methods if the connection is already bound when called

	
exception laurelin.ldap.exceptions.ConnectionUnbound

	Bases: laurelin.ldap.exceptions.InvalidBindState

Raised when any server operation is attempted after a connection is unbound/closed

	
exception laurelin.ldap.exceptions.InvalidBindState

	Bases: laurelin.ldap.exceptions.LDAPError

Base class for exceptions related to bind state

	
exception laurelin.ldap.exceptions.InvalidSyntaxError

	Bases: laurelin.ldap.exceptions.LDAPValidationError

Raised when syntax validation fails

	
exception laurelin.ldap.exceptions.LDAPConnectionError

	Bases: laurelin.ldap.exceptions.LDAPError

Error occurred creating connection to the LDAP server

	
exception laurelin.ldap.exceptions.LDAPError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base class for all exceptions raised by laurelin

	
exception laurelin.ldap.exceptions.LDAPExtensionError

	Bases: laurelin.ldap.exceptions.LDAPError

Error occurred setting up an extension module

	
exception laurelin.ldap.exceptions.LDAPSASLError

	Bases: laurelin.ldap.exceptions.LDAPError

Error occurred involving the SASL client

	
exception laurelin.ldap.exceptions.LDAPSchemaError

	Bases: laurelin.ldap.exceptions.LDAPError

Error relating to setting up the LDAP schema

	
exception laurelin.ldap.exceptions.LDAPSupportError

	Bases: laurelin.ldap.exceptions.LDAPError

A feature is not supported by the server

	
exception laurelin.ldap.exceptions.LDAPTransactionError

	Bases: laurelin.ldap.exceptions.LDAPError

Raised by actions not included in a modify transaction

	
exception laurelin.ldap.exceptions.LDAPUnicodeWarning

	Bases: laurelin.ldap.exceptions.LDAPWarning, UnicodeWarning [https://docs.python.org/3/library/exceptions.html#UnicodeWarning]

Warning category for unicode issues relating to LDAP

	
exception laurelin.ldap.exceptions.LDAPUnsolicitedMessage(lm, exc_msg)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Raised when a message with ID 0 is returned from the server

This may indicate an incompatability between laurelin and your server distribution and thus is outside the normal
exception inheritance chain.

	
exception laurelin.ldap.exceptions.LDAPValidationError

	Bases: laurelin.ldap.exceptions.LDAPError

Raised when validation fails

	
exception laurelin.ldap.exceptions.LDAPWarning

	Bases: Warning [https://docs.python.org/3/library/exceptions.html#Warning]

Generic LDAP warning category

	
exception laurelin.ldap.exceptions.MultipleSearchResults

	Bases: laurelin.ldap.exceptions.UnexpectedSearchResults

Got multiple search results when exactly one was required

	
exception laurelin.ldap.exceptions.NoSearchResults

	Bases: laurelin.ldap.exceptions.UnexpectedSearchResults

Got no search results when one or more was required

	
exception laurelin.ldap.exceptions.ProhibitedCharacterError

	Bases: laurelin.ldap.exceptions.LDAPError

Raised when a prohibited character is detected in RFC4518 string prep

	
exception laurelin.ldap.exceptions.TagError

	Bases: laurelin.ldap.exceptions.LDAPError

Error with an object tag

	
exception laurelin.ldap.exceptions.UnexpectedResponseType

	Bases: laurelin.ldap.exceptions.LDAPError

The response did not contain the expected protocol operation

	
exception laurelin.ldap.exceptions.UnexpectedSearchResults

	Bases: laurelin.ldap.exceptions.LDAPError

Base class for unhandled search result situations

laurelin.ldap.ldapobject module

laurelin.ldap.protoutils module

Laurelin OID Space

Laurelin IANA Registered Private Enterprise Number:

1.3.6.1.4.1.53450

Any OID with this prefix that is not explicitly mentioned in this document should be considered unstable and not
used for any purpose.

Namespaces

OID Prefix: 1.3.6.1.4.1.53450

	OID Suffix

	Description

	.1

	LDAP

	.1.1

	Controls

	.1.2

	Extensions

	.1.3

	Syntax rules

	.1.4

	Matching rules

	.1.5

	Attribute types

	.1.6

	Object classes

Objects

None currently assigned.

Testing Setup

Warning

Testing has been moved to docker using public images. Check .travis.yml for details. This page is maintained for
historical documentation purposes.

System

	Digital Ocean VPS with Debian 7.9

	OpenLDAP 2.4.31

	Cyrus SASL 2.1.25

	389 Directory Server 1.3.6

SASL

SASL config ldif

dn: cn=config
changetype: modify
replace: olcAuthzRegexp
olcAuthzRegexp: uid=([^,]+),.* cn=$1,dc=example,dc=org
-
add: olcSaslAuxprops
olcSaslAuxprops: sasldb
-
add: olcSaslRealm
olcSaslRealm: example.org
-
add: olcSaslHost
olcSaslHost: example.org
-

Adding sasl user password with

saslpasswd2 -u example.org -c $USER

SASL auth control test case

% ldapwhoami -Y DIGEST-MD5 -U admin -H ldap://127.0.0.1
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: admin
SASL SSF: 128
SASL data security layer installed.
dn:cn=admin,dc=example,dc=org

LDAPS/StartTLS

	Certs set up following this Stack Overflow answer [http://stackoverflow.com/a/21340898/94077].

	Configured OpenLDAP as follows:

dn: cn=config
changetype: modify
replace: olcTLSCertificateKeyFile
olcTLSCertificateKeyFile: /certs/serverkey.pem
-
replace: olcTLSCertificateFile
olcTLSCertificateFile: /certs/servercert.pem
-
replace: olcTLSCACertificateFile
olcTLSCACertificateFile: /certs/cacert.pem

	Added ldaps://127.0.0.1:636 to SLAPD_SERVICES in /etc/default/slapd

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 laurelin	

 	
 	
 laurelin.extensions	

 	
 	
 laurelin.ldap.exceptions	

Index

 A
 | C
 | I
 | L
 | M
 | N
 | P
 | T
 | U

A

 	
 	Abandon

C

 	
 	ConnectionAlreadyBound

 	
 	ConnectionUnbound

I

 	
 	InvalidBindState

 	
 	InvalidSyntaxError

L

 	
 	laurelin (module)

 	laurelin.extensions (module)

 	laurelin.ldap.exceptions (module)

 	LDAPConnectionError

 	LDAPError

 	LDAPExtensionError

 	LDAPSASLError

 	
 	LDAPSchemaError

 	LDAPSupportError

 	LDAPTransactionError

 	LDAPUnicodeWarning

 	LDAPUnsolicitedMessage

 	LDAPValidationError

 	LDAPWarning

M

 	
 	MultipleSearchResults

N

 	
 	NoSearchResults

P

 	
 	ProhibitedCharacterError

T

 	
 	TagError

U

 	
 	UnexpectedResponseType

 	
 	UnexpectedSearchResults

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Laurelin Python LDAP Client

 		
 User Docs

 		
 Features Overview

 		
 Missing/incomplete features

 		
 Walkthrough

 		
 Navigating

 		
 Getting Started

 		
 LDAP Methods Intro

 		
 LDAPObject Methods Intro

 		
 Relative Searching

 		
 Attributes Dictionaries

 		
 Modify Operations

 		
 Raw modify methods

 		
 Strict modification and higher-level modify functions

 		
 Global Defaults, LDAP instance attributes, and LDAP constructor arguments

 		
 Basic usage examples

 		
 1. Connect to local LDAP instance and iterate all objects

 		
 Simple Search Filters

 		
 Extensions

 		
 Laurelin Extensions

 		
 LDAP Extensions

 		
 LDAPObject Extensions

 		
 Config Files

 		
 Intro

 		
 Global Section

 		
 Extensions Section

 		
 Connection Section

 		
 Objects Section

 		
 Global vs. Connection

 		
 Load Order

 		
 Using Dicts Directly

 		
 Creating Extensions

 		
 Extension System

 		
 Extension Classes

 		
 Schema and Controls Classes

 		
 Depending on Extensions

 		
 Publishing Extensions

 		
 LDAP Extensions

 		
 Controls

 		
 Schema

 		
 Object Classes and Attribute Types

 		
 Matching Rules

 		
 Syntax Rules

 		
 Schema/Controls Registration System

 		
 OIDs

 		
 Validators

 		
 SchemaValidator

 		
 Class Diagram

 		
 Controls

 		
 Using Controls

 		
 Defining Controls

 		
 Changelog

 		
 2.0.4

 		
 2.0.3

 		
 2.0.2

 		
 2.0.1

 		
 2.0.0

 		
 1.5.3

 		
 1.5.2

 		
 1.5.0

 		
 1.4.1

 		
 1.4.0

 		
 1.3.1

 		
 1.3.0

 		
 1.2.0

 		
 1.1.0

 		
 Reference

 		
 laurelin package

 		
 Subpackages

 		
 Module contents

 		
 Laurelin OID Space

 		
 Namespaces

 		
 Objects

 		
 Testing Setup

 		
 System

 		
 SASL

 		
 SASL config ldif

 		
 Adding sasl user password with

 		
 SASL auth control test case

 		
 LDAPS/StartTLS

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

