
laurelin Documentation
Release 2.0.4

Alex Shafer

Apr 16, 2020

Contents

1 User Docs 3
1.1 Features Overview . 3
1.2 Missing/incomplete features . 4
1.3 Walkthrough . 4

1.3.1 Navigating . 4
1.3.2 Getting Started . 5
1.3.3 LDAP Methods Intro . 5
1.3.4 LDAPObject Methods Intro . 6

1.4 Relative Searching . 7
1.5 Attributes Dictionaries . 7
1.6 Modify Operations . 8

1.6.1 Raw modify methods . 8
1.6.2 Strict modification and higher-level modify functions . 8

1.7 Global Defaults, LDAP instance attributes, and LDAP constructor arguments 9
1.8 Basic usage examples . 10

1.8.1 1. Connect to local LDAP instance and iterate all objects 10

2 Simple Search Filters 11

3 Extensions 13
3.1 Laurelin Extensions . 13
3.2 LDAP Extensions . 13
3.3 LDAPObject Extensions . 13

4 Config Files 15
4.1 Intro . 15
4.2 Global Section . 16
4.3 Extensions Section . 16
4.4 Connection Section . 16
4.5 Objects Section . 16
4.6 Global vs. Connection . 17
4.7 Load Order . 17
4.8 Using Dicts Directly . 17

5 Creating Extensions 19
5.1 Extension System . 20

5.1.1 Extension Classes . 20

i

5.1.2 Schema and Controls Classes . 20
5.1.3 Depending on Extensions . 21
5.1.4 Publishing Extensions . 21

5.2 LDAP Extensions . 22
5.3 Controls . 23
5.4 Schema . 23

5.4.1 Object Classes and Attribute Types . 24
5.4.2 Matching Rules . 24
5.4.3 Syntax Rules . 25
5.4.4 Schema/Controls Registration System . 26

5.5 OIDs . 26
5.6 Validators . 26

5.6.1 SchemaValidator . 26
5.7 Class Diagram . 27

6 Controls 29
6.1 Using Controls . 29
6.2 Defining Controls . 30

7 Changelog 31
7.1 2.0.4 . 31
7.2 2.0.3 . 31
7.3 2.0.2 . 31
7.4 2.0.1 . 31
7.5 2.0.0 . 32
7.6 1.5.3 . 33
7.7 1.5.2 . 33
7.8 1.5.0 . 33
7.9 1.4.1 . 33
7.10 1.4.0 . 33
7.11 1.3.1 . 34
7.12 1.3.0 . 34
7.13 1.2.0 . 34
7.14 1.1.0 . 34

8 Reference 35
8.1 laurelin package . 35

8.1.1 Subpackages . 35
8.1.1.1 laurelin.extensions package . 35
8.1.1.2 laurelin.ldap package . 35

8.1.2 Module contents . 37

9 Laurelin OID Space 39
9.1 Namespaces . 39
9.2 Objects . 39

10 Testing Setup 41
10.1 System . 41
10.2 SASL . 41

10.2.1 SASL config ldif . 41
10.2.2 Adding sasl user password with . 42
10.2.3 SASL auth control test case . 42

10.3 LDAPS/StartTLS . 42

11 Indices and tables 43

ii

Python Module Index 45

Index 47

iii

iv

laurelin Documentation, Release 2.0.4

Laurelin is a pure-Python ORM-esque LDAP client. Check out the user docs to get started. View the source on
GitHub.

Contents 1

https://github.com/ashafer01/laurelin

laurelin Documentation, Release 2.0.4

2 Contents

CHAPTER 1

User Docs

• Features Overview

• Missing/incomplete features

• Walkthrough

– Navigating

– Getting Started

– LDAP Methods Intro

– LDAPObject Methods Intro

• Relative Searching

• Attributes Dictionaries

• Modify Operations

– Raw modify methods

– Strict modification and higher-level modify functions

• Global Defaults, LDAP instance attributes, and LDAP constructor arguments

• Basic usage examples

– 1. Connect to local LDAP instance and iterate all objects

1.1 Features Overview

• Fully compliant with RFC 4510 and its children.

• Pure Python codebase, meaning that it can be used with Python implementations other than CPython.

3

laurelin Documentation, Release 2.0.4

• Tested against CPython 2.7, 3.3, 3.4, 3.5, 3.6, PyPy, and PyPy3.

• Simplified filter syntax (optional, standard filter syntax is fully supported and used by default)

• Pythonic attributes input and presentation. It’s just a dictionary.

• Exceedingly easy relative searching. All objects have a suite of search methods which will automatically pass
the object’s DN as the search base. In many cases, you wont have to pass any arguments to search methods.

• Similarly, all objects have a suite of modify methods which allow you to change attributes on already-queried
objects without having to pass their DN again.

• Intelligent modification will never send existing attribute values to the server, nor will it request deletion of
attribute values that do not exist. This prevents many unnecessary server errors. Laurelin will go as far as to
query the object for you before modifying it to ensure you don’t see pointless errors (if you want it to).

• Custom validation. You can define validators which check new objects and modify operations for correctness
before sending them to the server. Since you control this code, this can be anything from a simple regex check
against a particular attribute value, to a complex approval queue mechanism.

• Highly extensible. New methods can easily and safely be bound to base classes.

• Seamless integration of controls. Once defined, these are just new keyword arguments on particular methods,
and additional attributes on the response object.

• Includes Python implementations of standard schema elements. This conveys many benefits:

– Allows changes to be validated before sending the server

– Allows matching rules to be used to compare attribute values locally. Many attribute types are case-
insensitive and have other rules meaning that the standard Python == or in operators won’t tell you what
you want to know. Laurelin makes them work according to these rules.

1.2 Missing/incomplete features

Some lesser-used features of the LDAP protocol have not yet been implemented or are incomplete. Check the GitHub
issues to see if your use case is affected. Please add a comment if so, or open a new issue if you spot anything else.
PRs are always welcome.

1.3 Walkthrough

Note: I’m assuming that if you’re here, you’re already pretty familiar with LDAP fundamentals. If you don’t know
how to write a search filter, you may want to do some more reading on LDAP before continuing.

1.3.1 Navigating

Just about everything you need for routine user tasks is available in the laurelin.ldap package. laurelin.
ldap.exceptions contains all exception definitions which you may need to import to catch, but even some com-
mon ones are included in laurelin.ldap. Beyond that, you should not need to get into the sub-modules unless
you are defining controls, extensions, schema, or validators.

Built-in extensions are stored in the laurelin.extensions package.

4 Chapter 1. User Docs

https://github.com/ashafer01/laurelin/issues
https://github.com/ashafer01/laurelin/issues

laurelin Documentation, Release 2.0.4

1.3.2 Getting Started

The first thing you should typically do after importing is configure logging and/or warnings. There is a lot of useful
information available at all log levels:

from laurelin.ldap import LDAP

LDAP.enable_logging()
Enables all log output on stderr
It also accepts an optional log level argument, e.g. LDAP.enable_logging(logging.
→˓ERROR)
The function also returns the handler it creates for optional further manual
→˓handling

import logging

logger = logging.getLogger('laurelin.ldap')
Manually configure the logger and handlers here using the standard logging module
Submodules use the logger matching their name, below laurelin.ldap

LDAP.log_warnings()
emit all LDAP warnings as WARN-level log messages on the laurelin.ldap logger
all other warnings will take the default action

LDAP.disable_warnings()
do not emit any LDAP warnings
all other warnings will take the default action

You can then initialize a connection to an LDAP server. Pass a URI string to the LDAP constructor:

with LDAP('ldap://dir.example.org:389') as ldap:
do stuff...

Its also possible, but not reccommended, to not use the context manager:
ldap = LDAP('ldap://dir.example.org:389')

This will open a connection and query the server to find the “base DN” or DN suffix. An empty LDAPObject will be
created with the base DN and stored as the base attribute on the LDAP instance. More on this later. For now we will
briefly cover the basic LDAP interface which may seem somewhat familiar if you have used the standard python-ldap
client before.

1.3.3 LDAP Methods Intro

LDAP.search() sends a search request and returns an iterable over instances of LDAPObject. Basic arguments
are described here (listed in order):

• base_dn - the absolute DN to start the search from

• scope - One of:

– Scope.BASE - only search base_dn itself

– Scope.ONE - search base_dn and its immediate children

– Scope.SUB - search base_dn and all of its descendents (default)

• filter - standard LDAP filter string

• attrs - a list of attributes to return for each object

1.3. Walkthrough 5

laurelin Documentation, Release 2.0.4

Use LDAP.get() if you just need to get a single object by its DN. Also accepts an optional list of attributes.

LDAP.add() adds a new object, and returns the corresponding LDAPObject, just pass the full, absolute DN and
an attributes dict

LDAP.delete() deletes an entire object. Just pass the full, absolute DN of the object to delete.

The following methods are preferred for modification, however raw modify methods are also provided.

All accept the absolute DN of the object to modify, and an attributes dictionary.

LDAP.add_attrs() adds new attributes.

LDAP.delete_attrs() deletes attribute values. Pass an empty values list in the attributes dictionary to delete all
values for an attribute.

LDAP.replace_attrs() replaces all values for the given attributes with the values passed in the attributes dic-
tionary. Atrributes that are not mentioned are not touched. Passing an empty list removes all values.

For LDAP.delete_attrs() and LDAP.replace_attrs() you can specify the constant LDAP.
DELETE_ALL in place of an empty attribute value list to remove all values for the attribute. For example:

ldap.replace_attrs('cn=foo,dc=example,dc=org', {'someAttribute': LDAP.DELETE_ALL})

If you wish to require the use of the constant instead of an empty list, pass error_empty_list=True to the LDAP
constructor. You can also pass ignore_empty_list=True to silently prevent these from being sent to the server
(this will be the default behavior in a future release).

1.3.4 LDAPObject Methods Intro

Great, right? But specifying absolute DNs all the time is no fun. Enter LDAPObject, and keep in mind the base
attribute mentioned earlier.

LDAPObject inherits from AttrsDict to present attributes. This interface is documented here.

LDAPObject defines methods corresponding to all of the LDAP methods, but pass the object’s dn automatically, or
only require the RDN prefix, with the object’s dn automatically appended to obtain the absolute DN.

LDAPObject.search() accepts all the same arguments as LDAP.search() except base_dn and scope. The
object’s own DN is always used for base_dn, and the relative_search_scope is always used as the scope.

LDAPObject.find() is more or less a better LDAPObject.get_child(). It looks at the ob-
ject’s relative_search_scope property to determine the most efficient way to find a single ob-
ject below this one. It will either do a BASE search if relative_seach_scope=Scope.ONE or
a SUBTREE search if relative_search_Scope=Scope.SUB. It is an error to use this method if
relative_search_scope=Scope.BASE.

LDAPObject.get_child() is analagous to LDAP.get() but it only needs the RDN, appending the object’s
own DN as mentioned earlier. (Note that LDAPObject.get() inherits from the native dict.get())

LDAPObject.add_child() is analagous to LDAP.add() again accepting an RDN in place of a full absolute
DN.

Use LDAPObject.get_attr() like dict.get() except an empty list will always be returned as default if the
attribute is not defined.

LDAPObject’s modify methods update the server first, then update the local attributes dictionary to
match if successful. LDAPObject.add_attrs(), LDAPObject.delete_attrs(), and LDAPObject.
replace_attrs() require only a new attributes dictionary as an argument, of the same format as for the matching
LDAP methods.

LDAPObject Examples:

6 Chapter 1. User Docs

https://docs.python.org/3/library/stdtypes.html#dict.get

laurelin Documentation, Release 2.0.4

people = ldap.base.get_child('ou=people')

print(people['objectClass'])
['top', 'organizationalUnit']

people.add_attrs({'description':['Contains all users']})

list all users
for user in people.search(filter='(objectClass=posixAccount)'):

print(user['uid'][0])

1.4 Relative Searching

All objects have LDAPObject.search() and LDAPObject.find() methods which utilize the
relative_search_scope attribute of the object. relative_search_scope can be passed as a keyword to
any method that creates new objects, including LDAP.obj(), LDAP.get(), LDAP.search(), LDAP.add(),
LDAPObject.obj(), LDAPObject.find(), LDAPObject.search(), LDAPObject.get_child(),
and LDAPObject.add_child().

When you create an object from another LDAPObject and you don’t specify the relative_search_scope, it
is automatically inherited from the parent object. When you create an object from an LDAP method, it defaults to
Scope.SUB.

The real win with this feature is when your tree is structured such that you can set this to Scope.ONE as this conveys
significant performance benefits, especially when using LDAPObject.find(). This allows laurelin to to construct
the absolute DN of the child object and perform a highly efficient BASE search.

1.5 Attributes Dictionaries

This common interface is used both for input and output of LDAP attributes. In short: dict keys are attribute names,
and dict values are a list of attribute values. For example:

{
'objectClass': ['posixAccount', 'inetOrgPerson'],
'uid': ['ashafer01'],
'uidNumber': ['1000'],
'gidNumber': ['100'],
'cn': ['Alex Shafer'],
'homeDirectory': ['/home/ashafer01'],
'loginShell': ['/bin/zsh'],
'mail': ['ashafer01@example.org'],

}

Note that there is an AttrsDict class defined - there is no requirement to create instances of this class to pass
as arguments, though you are welcome to if you find the additional methods provided this class convenient, such as
AttrsDict.get_attr(). Further, it overrides dict special methods to enforce type requirements and enable
case-insensitive keys.

Also note that when passing an attributes dictionary to LDAP.replace_attrs() or LDAP.delete_attrs()
it is legal to specify the constant LDAP.DELETE_ALL in place of a value list.

1.4. Relative Searching 7

laurelin Documentation, Release 2.0.4

1.6 Modify Operations

1.6.1 Raw modify methods

LDAP.modify() and LDAPObject.modify() work similarly to the modify functions in python-ldap, which
in turn very closely align with how modify operations are described at the protocol level. A list of Mod instances is
required with 3 arguments:

1. One of the Mod constants which describe the operation to perform on an attribute:

• Mod.ADD adds new attributes/values

• Mod.REPLACE replaces all values for an attribute, creating new attributes if necessary

• Mod.DELETE removes attributes/values.

2. The name of the attribute to modify. Each entry may only modify one attribute, but an unlimited number of
entries may be specified in a single modify operation.

3. A list of attribute values to use with the modify operation or the constant LDAP.DELETE_ALL:

• The list may be empty for Mod.REPLACE and Mod.DELETE, both of which will cause all values for the given
attribute to be removed from the object. The list may not be empty for Mod.ADD. You can also specify the con-
stant LDAP.DELETE_ALL in place of any empty list. If you wish to warn about empty lists or require the use
of the constant, pass warn_empty_list=True or error_empty_list=True to the LDAP constructor.
You can also pass ignore_empty_list=True to silently prevent these from being sent to the server (this
will be the default behavior in a future release).

• A non-empty list for Mod.ADD lists all new attribute values to add

• A non-empty list for Mod.DELETE lists specific attribute values to remove

• A non-empty list for Mod.REPLACE indicates ALL new values for the attribute - all others will be removed.

Example custom modify operation:

from laurelin.ldap.modify import Mod

ldap.modify('uid=ashafer01,ou=people,dc=example,dc=org', [
Mod(Mod.ADD, 'mobile', ['+1 401 555 1234', '+1 403 555 4321']),
Mod(Mod.ADD, 'homePhone', ['+1 404 555 6789']),
Mod(Mod.REPLACE, 'homeDirectory', ['/export/home/ashafer01']),

])

Using an LDAPObject instead:

ldap.base.obj('uid=ashafer01,ou=people').modify([
Mod(Mod.DELETE, 'mobile', ['+1 401 555 1234']),
Mod(Mod.DELETE, 'homePhone', LDAP.DELETE_ALL), # delete all homePhone values

])

Again, an arbitrary number of Mod entries may be specified for each modify call.

1.6.2 Strict modification and higher-level modify functions

The higher-level modify functions (add_attrs, delete_attrs, and replace_attrs) all rely on the concept
of strict modification - that is, to only send the modify operation, and to never perform an additional search. By default,
strict modification is disabled, meaning that, if necessary, an extra search will be performed before sending a modify
request.

8 Chapter 1. User Docs

laurelin Documentation, Release 2.0.4

You can enable strict modification by passing strict_modify=True to the LDAP constructor.

With strict modification disabled, the LDAP modify functions will engage a more intelligent modification strategy
after performing the extra query: for LDAP.add_attrs(), no duplicate values are sent to the server to be added.
Likewise for LDAP.delete_attrs(), deletion will not be requested for values that are not known to exist. This
prevents many unnecessary failures, as ultimately the final semantic state of the object is unchanged with or without
such failures. (Note that with LDAP.replace_attrs() no such failures are possible)

With the LDAPObject modify functions, the situaiton is slightly more complex. Regardless of the
strict_modify setting, the more intelligent modify strategy will always be used, using at least any already-queried
attribute data stored with the object (which could be complete data depending on how the object was originally ob-
tained). If strict_modify is disabled, however, another search may still be performed to fill in any missing
attributes that are mentioned in the passed attributes dict.

The raw modify functions on both LDAP and LDAPObject are unaffected by the strict_modify setting - they
will always attempt the modify operation exactly as specified.

1.7 Global Defaults, LDAP instance attributes, and LDAP constructor
arguments

All of the LDAP constructor arguments are set to None by default. In the constructor, any explicitly is None
arguments are set to their associated global default. These are attributes of the LDAP class, have the same name as the
argument, upper-cased, and with a DEFAULT_ prefix (but the prefix wont be repeated).

For example, the server argument has global default LDAP.DEFAULT_SERVER, and default_criticality
is LDAP.DEFAULT_CRITICALITY.

Most arguments also have an associated instance property. A complete table is below:

Global Default LDAP instance attribute LDAP constructor keyword
LDAP.DEFAULT_SERVER host_uri server
LDAP.DEFAULT_BASE_DN base_dn base_dn
LDAP.DEFAULT_FILTER none none
LDAP.DEFAULT_DEREF_ALIASES default_deref_aliases deref_aliases
LDAP.DEFAULT_SEARCH_TIMEOUT default_search_timeout search_timeout
LDAP.DEFAULT_CONNECT_TIMEOUT sock_params[0] connect_timeout
LDAP.DEFAULT_STRICT_MODIFY strict_modify strict_modify
LDAP.DEFAULT_REUSE_CONNECTION none reuse_connection
LDAP.DEFAULT_SSL_VERIFY ssl_verify ssl_verify
LDAP.DEFAULT_SSL_CA_FILE ssl_ca_file ssl_ca_file
LDAP.DEFAULT_SSL_CA_PATH ssl_ca_path ssl_ca_path
LDAP.DEFAULT_SSL_CA_DATA ssl_ca_data ssl_ca_data
LDAP.DEFAULT_FETCH_RESULT_REFS default_fetch_result_refsfetch_result_refs
LDAP.DEFAULT_FOLLOW_REFERRALS default_follow_referralsfollow_referrals
LDAP.DEFAULT_SASL_MECH default_sasl_mech default_sasl_mech
LDAP.DEFAULT_SASL_FATAL_DOWNGRADE_CHECKsasl_fatal_downgrade_checksasl_fatal_downgrade_check
LDAP.DEFAULT_CRITICALITY default_criticality default_criticality
LDAP.DEFAULT_VALIDATORS validators validators
LDAP.DEFAULT_WARN_EMPTY_LIST warn_empty_list warn_empty_list
LDAP.DEFAULT_ERROR_EMPTY_LIST error_empty_list error_empty_list
LDAP.DEFAULT_IGNORE_EMPTY_LIST ignore_empty_list ignore_empty_list
LDAP.DEFAULT_FILTER_SYNTAX default_filter_syntax filter_syntax
LDAP.DEFAULT_BUILT_IN_EXTENSIONS_ONLY`none public built_in_extensions_only

1.7. Global Defaults, LDAP instance attributes, and LDAP constructor arguments 9

laurelin Documentation, Release 2.0.4

The LDAP instance attributes beginning with default_ are used as the defaults for corresponding arguments on
other methods. default_sasl_mech is used with LDAP.sasl_bind(), default_criticality is the
default criticality of all controls, the other default_ attributes are used with LDAP.search().

The ssl_ prefixed instances attributes are used as the defaults for LDAP.start_tls(), as well as the socket
configuration when connecting to an ldaps:// socket.

1.8 Basic usage examples

1.8.1 1. Connect to local LDAP instance and iterate all objects

from laurelin.ldap import LDAP

with LDAP('ldapi:///') as ldap:
ldap.sasl_bind()
for obj in ldap.base.search():

print(obj.format_ldif())

LDAP.sasl_bind() defaults to the EXTERNALmechanism when an ldapi: URI is given, which uses the current
user for authorization via the unix socket (Known as “autobind” with 389 Directory Server)

10 Chapter 1. User Docs

CHAPTER 2

Simple Search Filters

Laurelin provides an alternate syntax for search filters that is much simpler than the standard, RFC 4515-compliant,
filter syntax. In short, it is a hybrid between SQL logic expressions and standard LDAP filter comparisons.

In the simplest case of a single comparison, the two syntaxes are identical:

Standard Simple
(gidNumber=100) (gidNumber=100)

But when it comes to expressing logic, the Laurelin simplified filter differs quite a bit:

Standard Simple
(&(gidNumber<=1000)(!
(memberUid=*)))

(gidNumber<=1000) AND NOT
(memberUid=*)

Feel free to include parentheses in your simple filters if it helps clarify the logic:

Simple (without extra parens) Simple (equivalent with extra parens)
(gidNumber<=1000) AND NOT
(memberUid=*)

(gidNumber<=1000) AND (NOT
(memberUid=*))

Some more equivalent standard and simple filters:

Standard Simple
(&(abc=foo)(|(def=bar)(ghi=jkl))) (abc=foo) AND ((def=bar) OR (ghi=jkl))
(|(abc=foo)(&(def=bar)(ghi=jkl))) (abc=foo) OR (def=bar) AND (ghi=jkl)
(&(abc=foo)(|(def=bar)(ghi=jkl))(xyz=abc))(abc=foo) AND ((def=bar) OR (ghi=jkl))

AND (xyz=abc)

By default, Laurelin will interpret your filters with the unified filter syntax, meaning you can embed a full RFC 4515-
compliant filter anywhere you see a simple comparison in the above examples. This includes as the only element in
the filter, making this fully backwards compatible with RFC 4515 standard filters.

11

laurelin Documentation, Release 2.0.4

Currently available syntaxes are FilterSyntax.STANDARD to limit to RFC 4515, FilterSyntax.SIMPLE to
limit to only simple comparisons within SQL-style logic, and the default FilterSyntax.UNIFIED.

If you wish to restrict the syntax, you can do one of the following:

1. Pass filter_syntax= to LDAP.search() or any other search method:

from laurelin.ldap import LDAP, FilterSyntax

with LDAP() as ldap:
search = ldap.search('o=foo', filter='(abc=foo) AND (def=bar)', filter_

→˓syntax=FilterSyntax.SIMPLE)

2. Pass filter_syntax= to the LDAP constructor:

from laurelin.ldap import LDAP, FilterSyntax

with LDAP(filter_syntax=FilterSyntax.SIMPLE) as ldap:
search1 = ldap.search('o=foo', filter='(abc=foo) AND (def=bar)')
search2 = ldap.search('o=bar', filter='(xyz=foo) OR (abc=bar)')

3. Set the global default LDAP.DEFAULT_FILTER_SYNTAX before instantiating any LDAP instances:

from laurelin.ldap import LDAP, FilterSyntax

LDAP.DEFAULT_FILTER_SYNTAX = FilterSyntax.STANDARD

with LDAP() as ldap:
search = ldap.search('o=foo', filter='(&(abc=foo)(def=bar))')

with LDAP('ldap://localhost:10389') as ldap:
search = ldap.search('o=bar', filter='(|(xyz=foo)(abc=bar))')

4. Do either of the two above using Config Files.

Note: How is this possible?

Doesn’t the filter get sent to the server and parsed there like SQL? No! In LDAP, it is up to the client to parse the
filter string into a set of objects that are encoded and sent to the server. If you’ve got any other ideas for alternate filter
syntaxes, please submit a PR!

12 Chapter 2. Simple Search Filters

CHAPTER 3

Extensions

The following class documents show names of available extensions on different instances.

3.1 Laurelin Extensions

Every defined extension has a property in this class. An instance is accessible at laurelin.ldap.extensions.
For example, to require the base schema:

from laurelin.ldap import extensions

extensions.base_schema.require()

3.2 LDAP Extensions

These properties are available on LDAP instances.

3.3 LDAPObject Extensions

These properties are available on LDAPObject instances.

13

laurelin Documentation, Release 2.0.4

14 Chapter 3. Extensions

CHAPTER 4

Config Files

• Intro

• Global Section

• Extensions Section

• Connection Section

• Objects Section

• Global vs. Connection

• Load Order

• Using Dicts Directly

4.1 Intro

Laurelin config files may be YAML or JSON formatted out of the box. You can also supply your own custom decoding
function to handle arbitrary formats. The important part is that the file contents decode to a dictionary. Below is an
example YAML file:

global:
SSL_CA_PATH: /etc/ldap/cacerts
IGNORE_EMPTY_LIST: true

extensions:
- laurelin.extensions.descattrs
- laurelin.extensions.netgroups

connection:
server: ldap://dir01.example.org
start_tls: true
simple_bind:

(continues on next page)

15

laurelin Documentation, Release 2.0.4

(continued from previous page)

username: testuser
passowrd: testpassword

connect_timeout: 30
objects:

- rdn: ou=people
tag: posix_user_base

- rdn: ou=groups
tag: posix_group_base

- rdn: ou=netgroups
tag: netgroup_base

You can load and apply such a file by using config.load_file(). If a connection section was specified, a
new connection will be established and returned from the function.

4.2 Global Section

Each key in the global section must correspond to one of the DEFAULT_ prefixed attributes on LDAP. As you can see
in the example, the DEFAULT_ prefix is optional. Not demonstrated by the example is that keys are case-insensitive
(that is, they will be upper-cased for you).

4.3 Extensions Section

This is simply a list of extension module names which will get activated when the config file is loaded.

4.4 Connection Section

Keys here are mostly corresponding to LDAP constructor arguments, however there are a few special ones:

• start_tls A boolean option, if set to true will execute LDAP.start_tls() after opening the connec-
tion

• simple_bind A dictionary of parameters to pass to LDAP.simple_bind()

• sasl_bind A dictionary of parameters to pass to LDAP.sasl_bind()

Note that simple_bind and sasl_bind are both optional, and mutually exclude each other. In other words, it is
an error to specify both of these keys.

Note that start_tls will always occur before any bind (if requested).

4.5 Objects Section

Note: You cannot specify objects without also specifying a connection

This is a list of dicts where keys correspond to LDAP.obj() or LDAPObject.obj() arguments. You must specify
exactly one of dn or rdn. If dn is specified, this will be taken as the full, absolute DN of the object, and parameters
will be passed to LDAP.obj(). If rdn is specified, this will be taken as the RDN relative to the connection’s base
object, or the base of the tree, and parameters will be passed to LDAPObject.obj().

16 Chapter 4. Config Files

laurelin Documentation, Release 2.0.4

Also required for all objects is the tag key. This is how you will access created objects. For example, to access the
first object in the config file example above:

ldap = config.load_file('/path/to/file.yaml')
posix_users = ldap.tag('posix_user_base')

Its important to note that the server is not queried when creating these objects, so they will not have any local attributes.
If you require local attributes, you can all LDAPObject.refresh() on the object.

4.6 Global vs. Connection

As mentioned elsewhere in the docs, there is a global config parameter associated with every connection parameter,
meaning in a config file you can define your connection parameters in either section. This does not have the exact
same end functionality, though. In general you should prefer connection for the following reasons:

• The connection will not be created when the config file is loaded if you configure everything in global

• You cannot define objects without defining a connection

• You cannot specify start_tls or bind parameters globally

However there are cases where it may be desirable to specify everything as a global default. Taking this approach
allows you to use the LDAP constructor with as few as zero arguments after loading the config. You can still bind
as usual by calling LDAP.simple_bind() or LDAP.sasl_bind() on the connection. You can also manually
create objects with obj() methods.

4.7 Load Order

Sections are loaded and applied in a specific order:

1. global

2. extensions

3. connection

4. objects

You can specify sections in whatever order is convenient in your file. They will always be used in the above order.

4.8 Using Dicts Directly

If you already have your configuration parameters in one or more dictionaries, you can apply them directly with-
out going through the file interface. You can pass a dictionary of the same format as in a config file to config.
load_config_dict(). Like load_file(), this will establish and return the new connection if one was de-
fined.

You can also use the other config methods to apply dictionary configurations piecemeal. These process fragments
of the larger config dictionary. Check the reference docs for details if you need to do this.

4.6. Global vs. Connection 17

laurelin Documentation, Release 2.0.4

18 Chapter 4. Config Files

CHAPTER 5

Creating Extensions

• Extension System

– Extension Classes

– Schema and Controls Classes

– Depending on Extensions

– Publishing Extensions

• LDAP Extensions

• Controls

• Schema

– Object Classes and Attribute Types

– Matching Rules

– Syntax Rules

– Schema/Controls Registration System

• OIDs

• Validators

– SchemaValidator

• Class Diagram

The most important thing to note about “extensions” is that they are not necessarily LDAP extensions. In laurelin, they
are simply a module that does any combination of: defining new schema elements, defining new controls, or defining
new methods to be attached to LDAP or LDAPObject.

19

laurelin Documentation, Release 2.0.4

5.1 Extension System

Extensions live in any importable module or package. They must at minimum define a class called
LaurelinExtension as follows:

from laurelin.ldap import BaseLaurelinExtension

class LaurelinExtension(BaseLaurelinExtension):
NAME = 'some_name'

You’ll notice the BaseLaurelinExtension here - this is required. It is one of many weapons at your disposal.

5.1.1 Extension Classes

All of these share the same common end-user interface of being exposed as either a property or dynamic attribute on
some other instance that the user typically will already use normally. Which class they are attached to depends on the
name and base class of the defined extension class. Whether they are accessible as a property (with IDE auto-complete
support) or a dynamic attribute depends on how the extension is loaded and defined (more below), but the user API is
unchanged either way.

class LaurelinExtension(BaseLaurelinExtension): As described above, this is where you define
the name of the property or dynamic attribute where all instances of these extension classes can be accessed.
One instance of this class is created per Python interpreter when the extesion is first added or used (more on this
later) and it is accessible to users at laurelin.ldap.extensions.<NAME>.

class LaurelinLDAPExtension(BaseLaurelinLDAPExtension): This is where you can bind
methods, attributes, etc. that will be attached to LDAP by way of property or dynamic attribute with name
corresponding to your LaurelinExtension.NAME. You can access the parent LDAP instance at self.
parent. Up to one instance is created per LDAP instance when the property or dynamic attribute is first
accessed on a particular instance.

class LaurelinLDAPObjectExtension(BaseLaurelinLDAPObjectExtension): This is where
you can bind methods, attributes, etc. that will be attached to LDAPObject by way of property or dy-
namic attribute with name corresponding to your LaurelinExtension.NAME. You can access the parent
LDAPObject instance at self.parent. Up to once instance is created per LDAPObject instance when
the property or dynamic attribute is first accessed on a particular instance.

5.1.2 Schema and Controls Classes

These two simply attempt to register all public attributes defined within them as schema elements or controls. More
about actually defining these below, the class signatures should look like this, though:

class LaurelinSchema(BaseLaurelinSchema): Define all SyntaxRule and
EqualityMatchingRule classes as local classes within this class. Directly instantiate ObjectClass
and AttributeType with standard spec strings and assign them to class attributes.

class LaurelinControls(BaseLaurelinControls): Define all Control classes as local classes
within this class.

Note that the placement of schema and control definitions is fairly flexible and are not restricted to these 2 classes (but
this kind of organization or a variation upon it is suggested). See the Schema and Controls sections below for more
details.

Also note that if your schema depends on the base schema, you must require it at the top of your extension like so:

20 Chapter 5. Creating Extensions

laurelin Documentation, Release 2.0.4

from laurelin.ldap import extensions

extensions.base_schema.require()

5.1.3 Depending on Extensions

Extension authors may want to duplicate and tailor some or all of this information in their own documentation for
users.

There are two ways laurelin can be made aware of extensions:

1. By passing a module name string to add_extension(). This will cause the extension class instances to be
made available as dynamic attributes.

2. By being defined in Extensible.AVAILABLE_EXTENSIONS. A script will automatically generate prop-
erties that are inherited by the appropriate parent class (LDAP or LDAPObject). This has the benefit that IDEs
can auto-complete extension instances if the extension is installed (tested with PyCharm). Also defined with
your extension is the string module name, so your users do not need to copy this themselves, as well as the
pip package name, which will be included in the exception if users attempt to use your extension when its not
installed.

There are clear pros and cons to each approach, and extension authors are welcome to instruct users to take either
approach. #1 may be preferred during development, or if you do not intend to publish your extension publicly.

One caveat to #2 above if you define schema or controls, is your users will need to explicitly require your extension
like so:

from laurelin.ldap import extensions

extensions.<NAME>.require()

This happens implicitly in the following situations:

• When add_extension() is called, as in #1 above

• When the user accesses your <NAME> extension property/attribute on LDAP or LDAPObject, if you defined
any extensions to those classes

• Technically happens implicitly when extensions.<NAME> is accessed, so if you define any other user-
exposed attributes on your LaurelinExtension class that all users must access, you can instruct them to
use that instead.

So if you require any of these of your users by way of your own documentation, you can also have them skip the
explicit require() call.

Regardless of whether your extension is added or defined, your users will need to explicitly add the dependency to
their own package. Laurelin will never depend on an extension module, and only built-in extensions are guarnateed to
be available.

5.1.4 Publishing Extensions

If you are planning on defining any standard LDAP extensions, schema, or controls, I suggest packaging your module
under laurelin.extensions, which is a namespace package. This allows an exceedingly simple and easy path
to eventual merging in as a built-in extension. You are welcome to package under any importable module, though.

If you choose to instruct your users to add your extension, please be sure to write clear and accessible documentation
for them.

5.1. Extension System 21

https://setuptools.readthedocs.io/en/latest/setuptools.html#namespace-packages

laurelin Documentation, Release 2.0.4

If you choose to define your extension, please submit a pull request on GitHub. You should include ONLY a ~5 line
addition to Extensible.AVAILABLE_EXTENSIONS. The dict key should match your LaurelinExtension.
NAME. The keys in the sub-dictionary should be pretty self-explanatory. Below is a contrived example patch:

diff --git a/laurelin/ldap/extensible/base.py b/laurelin/ldap/extensible/base.py
index 593e64b..bd7b233 100644
--- a/laurelin/ldap/extensible/base.py
+++ b/laurelin/ldap/extensible/base.py
@@ -132,6 +132,11 @@ class Extensible(object):

'pip_package': None, # built-in
'docstring': 'Built-in extension defining standard paged results control

→˓for search'
},

+ 'some_ext': {
+ 'module': 'your.extension.module',
+ 'pip_package': 'laurelin-some-ext',
+ 'docstring': 'A contrived example laurelin extension'
+ },

}

ADDITIONAL_EXTENSIONS = {}

Please keep your docstrings short. They will be rendered in laurelin’s documentation. You may include a Sphinx-
formatted shortlink to your own docs.

If you have any questions, problems, or concerns, please open an issue on GitHub.

5.2 LDAP Extensions

When defining an actual LDAP extension with an OID and requiring server support, you’ll create the laurelin exten-
sion as shown above, but you’ll be calling the LDAP.send_extended_request() method from your extension
methods within your LaurelinLDAPExtension or LaurelinLDAPObjectExtension.

As you can see, this accepts the OID of the LDAP extension and an optional request value. You can also pass
control keywords, and the require_success keyword, which will automatically check for success on the final
extendedResponse message (and raise an LDAPError on failure).

If your LDAP extension expects intermediateResponse messages, you can iterate the return from LDAP.
send_extended_request(). You can also call ExtendedResponseHandle.recv_response() to get
only one message at a time (preferred to iteration if you only expect the one extendedResponse message).

The built-in LDAP.who_am_i() method is an excellent example of a simple LDAP extension:

from laurelin.ldap import LDAP
from laurelin.ldap.protoutils import get_string_component

def who_am_i(self):
handle = self.send_extended_request(LDAP.OID_WHOAMI, require_success=True,

→˓**ctrl_kwds)
xr, res_ctrls = handle.recv_response()
return get_string_component(xr, 'responseValue')

As a laurelin extension this might look like:

from laurelin.ldap import BaseLaurelinLDAPExtension

(continues on next page)

22 Chapter 5. Creating Extensions

laurelin Documentation, Release 2.0.4

(continued from previous page)

...

class LaurelinLDAPExtension(BaseLaurelinLDAPExtension):
def who_am_i(self):

handle = self.parent.send_extended_request(...)
...

Note the use of self.parent to access LDAP.send_extended_request().

5.3 Controls

Extensions may wish to define controls for use on existing methods. You will need to define one or more Control
classes, see Defining Controls for more information about this. The important part for the purposes of this document
is where to place those class definitions in your extension module.

You must define a subclass of LaurelinTransiter, or the more semantically appropriate but functionally iden-
tical BaseLaurelinControls. Your subclass must then have local Control subclasses defined within it. For
example:

from laurelin.ldap import BaseLaurelinExtension, BaseLaurelinControls, Control

class LaurelinExtension(BaseLaurelinExtension):
NAME = 'your_name'

class LaurelinControls(BaseLaurelinControls):
class YourControl(Control):

method = ('search',)
keyword = 'some_kwd'
REQUEST_OID = '1.2.3.4'

Note that controls may alternatively be defined directly in your LaurelinExtension class.

5.4 Schema

Extensions may be associated with a set of new schema elements, including object classes, attribute types, matching
rules, and syntax rules. Once defined, these will get used automatically by other parts of laurelin, including the
SchemaValidator, and for comparing items in attribute value lists within an LDAPObject.

Like controls, all extension schema elements must be defined as attributes on a subclass of LaurelinTransiter.
The more semantically appropriate BaseLaurelinSchema is provided as well. You can use these base classes to
organize your schema and controls however appropriate. Alternatively, you may also define schema elements directly
in your LaurelinExtension class.

If your schema depends on the laurelin built-in base schema, you must explicitly call laurelin.ldap.
extensions.base_schema.require() near the top of your extension module.

Below is a simple example of defining a new object class depending on the base schema:

from laurelin.ldap import BaseLaurelinExtension, BaseLaurelinControls, ObjectClass,
→˓extensions

extensions.base_schema.require()

(continues on next page)

5.3. Controls 23

laurelin Documentation, Release 2.0.4

(continued from previous page)

class LaurelinExtension(BaseLaurelinExtension):
NAME = 'your_name'

class LaurelinSchema(BaseLaurelinSchema):
MY_COMPANY_USER = ObjectClass('''
(1.2.3.4 NAME 'myCompanyUser' SUP inetOrgPerson STRUCTURAL

MUST (companyAttribute $ anotherAttribute)
MAY description

''')

The superclass of inetOrgPerson makes this example require the base schema. All schema instance elements
must be defined as class attributes in this manner (for object classes and attribute types), and all class elements must
be defined below the LaurelinSchema class (for syntax rules and matching rules).

5.4.1 Object Classes and Attribute Types

Creating object classes and attribute types is very simple. Just take the standard LDAP specification and pass it to the
appropriate class constructor. Examples from the netgroups extension:

from laurelin.ldap.objectclass import ObjectClass
from laurelin.ldap.attributetype import AttributeType

ObjectClass('''
(1.3.6.1.1.1.2.8 NAME 'nisNetgroup' SUP top STRUCTURAL
MUST cn
MAY (nisNetgroupTriple $ memberNisNetgroup $ description))

''')

AttributeType('''
(1.3.6.1.1.1.1.14 NAME 'nisNetgroupTriple'
DESC 'Netgroup triple'
EQUALITY caseExactMatch
SYNTAX 1.3.6.1.1.1.0.0)

''')

5.4.2 Matching Rules

Defining matching rules takes a little more effort. Matching rules must subclass EqualityMatchingRule. Re-
quired class attributes include:

• OID - the numeric OID of this rule (see section below about OIDs).

• NAME - the name of the rule. Must also be globally unique. This is usually how matching rules are referenced
in attribute type specs (see caseExactMatch in above example).

• SYNTAX - the numeric OID of the syntax rule that assertion values must match.

Matching rule classes may also optionally define the following attribute:

• prep_methods - a sequence of callables that will be used to prepare both the attribute value and asser-
tion value for comparison. These will typically be defined in laurelin.ldap.rfc4518. The initial at-
tribute/assertion value will be passed into the first item in the sequence, and the return from each is passed into
the next item.

If you prefer, you can also override the MatchingRule.prepare() method on your matching rule class.

24 Chapter 5. Creating Extensions

laurelin Documentation, Release 2.0.4

You may also wish to override EqualityMatchingRule.do_match(). This is passed the two prepared values
and must return a boolean. Overriding MatchingRule.match() is not recommended.

Below is an example matching rule from laurelin.extensions.base_schema:

from laurelin.ldap.rules import EqualityMatchingRule
from laurelin.ldap import rfc4518

class numericStringMatch(EqualityMatchingRule):
OID = '2.5.13.8'
NAME = 'numericStringMatch'
SYNTAX = '1.3.6.1.4.1.1466.115.121.1.36'
prep_methods = (

rfc4518.Transcode,
rfc4518.Map.characters,
rfc4518.Normalize,
rfc4518.Prohibit,
rfc4518.Insignificant.numeric_string,

)

5.4.3 Syntax Rules

Syntax rules must subclass SyntaxRule, although in almost all cases you can use RegexSyntaxRule. If you
do not use a regular expression, you must override SyntaxRule.validate(), which receives a single string
argument, and must raise InvalidSyntaxError when it is incorrect.

In all cases, you must define the following attributes on your syntax rule class:

• OID - the numeric OID of the rule (See section below about OIDs).

• DESC - a brief description of the rule. This is mainly used in exception messages.

Regex syntax rules must also define:

• regex - the regular expression.

Below are examples from laurelin.extensions.base_schema:

from laurelin.ldap.rules import SyntaxRule, RegexSyntaxRule
from laurelin.ldap.exceptions import InvalidSyntaxError
import six

class DirectoryString(SyntaxRule):
OID = '1.3.6.1.4.1.1466.115.121.1.15'
DESC = 'Directory String'

def validate(self, s):
if not isinstance(s, six.string_types) or (len(s) == 0):

raise InvalidSyntaxError('Not a valid {0}'.format(self.DESC))

class Integer(RegexSyntaxRule):
OID = '1.3.6.1.4.1.1466.115.121.1.27'
DESC = 'INTEGER'
regex = r'^-?[1-9][0-9]*$'

5.4. Schema 25

laurelin Documentation, Release 2.0.4

5.4.4 Schema/Controls Registration System

Schema and controls go through an identical 2-step registration system. The LaurelinTransiter class first stores
a list of all schema and control attributes mapped to the module name that defined them. This occurs when the class is
defined, i.e. at import time.

The LaurelinRegistrar.require() method then invokes the .register() method on each schema ele-
ment or control class defined in the same module. This causes the element to be mapped according to its class, name,
and OID - which are ultimately what is needed for laurelin to make use of the object.

5.5 OIDs

Controls and schema elements all need an OID to be defined. You should obtain a Private Enterprise Number from
IANA for any OIDs that you publish to the internet (and probably for any that you don’t as well). This is completely
free and usually only takes a few days to process.

The OID you get from IANA should be used as the root of your namespace, and you can define the structure below it
as you see fit.

5.6 Validators

Validators must subclass Validator. The public interface includes Validator.validate_object() and
Validator.validate_modify(). You will usually just want to override these, however they do include a
default implementation which checks all attributes using the abstract Validator._validate_attribute().
Check method docs for more information about how to define these.

When defining validators in your extension, you can ensure your users don’t need to import the module again by
attaching the class to your LaurelinExtension class like so:

from laurelin.ldap import BaseLaurelinExtension, Validator

class LaurelinExtension(BaseLaurelinExtension):
NAME = 'my_ext'

class MyValidator(Validator):
...
pass

Users can then access it like so:

from laurelin.ldap import LDAP, extensions

with LDAP('ldaps://dir.example.org', validators=[extensions.my_ext.MyValidator]) as
→˓ldap:

do stuff

5.6.1 SchemaValidator

Laurelin ships with SchemaValidatorwhich, when applied to a connection, automatically checks write operations
for schema validity before sending the request to the server. This includes any schema you define in your extensions.
Users can enable this like so:

26 Chapter 5. Creating Extensions

https://pen.iana.org/pen/PenApplication.page

laurelin Documentation, Release 2.0.4

from laurelin.ldap import LDAP
from laurelin.ldap.schema import SchemaValidator

with LDAP('ldaps://dir.example.org', validators=[SchemaValidator]) as ldap:
do stuff

5.7 Class Diagram

The extension subsystem has several interconnecting classes. Blue are auto-generated classes, and green are defined
in extension modules. Unlabeled arrows indicate class inheritance or are self-explanatory.

5.7. Class Diagram 27

laurelin Documentation, Release 2.0.4

28 Chapter 5. Creating Extensions

CHAPTER 6

Controls

• Using Controls

• Defining Controls

Many LDAP users may be unfamiliar with controls. RFC4511 defines controls as “providing a mechanism whereby
the semantics and arguments of existing LDAP operations may be extended.” In other words, they can:

1. Instruct the server to process a method differently

2. Add new arguments to methods to control the altered processing

3. Add additional data to the response to a method call

It is important to note that both the server and client must mutually support all controls used. Laurelin will automati-
cally check for server support when using controls.

6.1 Using Controls

Once controls have been defined, they are very easy to use. Each control has a keyword and optionally a
response_attr.

The keyword can be passed as a keyword argument to specific methods. The value type and format is up to the
control implementation. Whatever value the control expects can be wrapped in critical or optional to declare
the criticality of the control.

If defined, the response_attr will be set as an attribute on the object returned from the method call.

For search response controls, the control value will be set on the individual LDAPObject if it appeared on the
associated search result entry. If it appeared on the search results done message, the control value will be set on the
iterator object.

In the highly unusual case that a response control is set on a search result reference message, the control values will
be inaccessible if fetch_result_refs is set to True. A warning will be issued in this case.

29

laurelin Documentation, Release 2.0.4

If fetch_result_refs is set to False, the response control values will be set on the
SearchReferenceHandle that is yielded from the results iterator.

An LDAPSupportError will be raised if the control is marked critical and the server does not support it.

6.2 Defining Controls

Controls must subclass Control. As soon as they are defined as a subclass of Control, they are ready to use. Controls
must define at least:

• Control.method, a tuple of method names that this control supports. Current method names are bind,
search, compare, add, delete, mod_dn, modify, and ext (extended request). Note that these method names do not
necessarily correspond directly to LDAP method names. Even when they do, other methods may call the base
method and pass through control keywords. For example, LDAPObject.find() ends up passing any control
keywords through into LDAP.search() (which matches the search method). The bind method is used by
both LDAP.simple_bind() and LDAP.sasl_bind().

• Control.keyword, the keyword argument to be used for the request control.

• Control.REQUEST_OID the OID of the reuqest control. If the control has criticality, the OID must be listed
in the supportedControl attribute of the root DSE of the server at runtime.

If there is an associated response control, also define the following:

• Control.response_attr, the name of the attribute which will be set on objects returned from the method.

• Control.RESPONSE_OID the OID of the response control. This may be equal to Control.
REQUEST_OID depending on the spec. This must match the controlType of the response control to be properly
set.

Most controls will not need to override methods if only strings are used for request and response values. However, if
it is desirable to use a more complex data structure as a control value, you can override the Control.prepare()
method to accept this structure as its first argument. You will need to process this into a single string for transmission
to the server, and pass it into, and return, the base Control.prepare(). The second argument is a boolean
describing criticality, and must also be passed into the base method.

To return a more complex value for the response, you can override the Control.handle() method. This will be
passed the response control value string, and the return will be assigned to the response_attr attribute on the
returned object.

30 Chapter 6. Controls

CHAPTER 7

Changelog

7.1 2.0.4

Released 2019.05.30

• Switch to an internal pyasn1

• Fix issue with binary data

7.2 2.0.3

Released 2019.02.14

• No code changes. Clarified stability guarantee for laurelin.extensions

7.3 2.0.2

Released 2019.02.12

• Fix: make extension requirements align with specification

• Update documentation with OID information

7.4 2.0.1

Released 2019.02.09

• Fix: Correctly request no attributes be returned for LDAP.exists()

31

laurelin Documentation, Release 2.0.4

7.5 2.0.0

Released 2018.11.17

• Empty lists in a replace or delete modify operation are now ignored by default

– To delete all attribue values in a replace or delete, use DELETE_ALL introduced in version 1.2.0.

– To restore the previous functionality, you can set the global default LDAP.
DEFAULT_IGNORE_EMPTY_LIST = False, or restore on a per-connection basis by passing
ignore_empty_list=False to the LDAP() constructor.

– The rationale for this change is a) improved semantics, and b) eliminates unexpected behavior in cases like
applying a filter to determine a list to remove (which may result in an empty list, meaning no items should
be removed)

• Extensions API has been changed, both for users and creators of extensions:

– Rather than attaching new attributes directly to the LDAP or LDAPObject class, a property (or dynamic
attribute) is made available on those classes for each extension, which provides access to an object exposing
those same attributes.

– Many extension attributes have been renamed to avoid semantic duplication introduced by this
change. For example ldap.get_netgroup_users() should be replaced with ldap.netgroups.
get_users().

– The descattrs extension has been changed slightly to work better with these new changes. Description
attributes can now be accessed and modified like so (no additional imports necessary):

o = ldap.base.obj('cn=metadata')
print(o.descattrs['some_attr'])
['value1', 'value2']

o.descattrs.add({'some_attr': ['value3']})
print(o.descattrs['some_attr'])
['value1', 'value2', 'value3']

these also work now:

'some_attr' in o.descattrs

for attr in o.descattrs:

– Docs have been updated with information about creating extensions.

– Internal changes around loading of schema elements and controls

• Base schema changes:

– The base schema will now be automatically loaded when needed. At present, this includes:

* When checking for the presence of a value in an attribute list

* When a SchemaValidator is initialized

* When the netgroups extension is used

– The base schema is no longer defined in laurelin.ldap.schema. It now is housed in a built-in
extension. If previously using import laurelin.ldap.schema or similar to enable client-side
schema checking, this should be replaced with something like the following:

32 Chapter 7. Changelog

laurelin Documentation, Release 2.0.4

from laurelin.ldap import extensions
extensions.base_schema.require()

However, as stated above, this will not be necessary for almost all use cases.

• Properly documented the public API definition

7.6 1.5.3

Release 2018.08.30

• Add python 3.7 support

7.7 1.5.2

Released 2018.06.15

1.5.1 was built off of the wrong branch and will be removed.

• Minor fix: Added FilterSyntax to all

• Doc update: added dependent info section to readme

7.8 1.5.0

Released 2018.06.09

• Added new simple filter syntax

• Switched default filter syntax to UNIFIED which should be backwards compatible with standard RFC 4515
filters

Special thanks to @jpypi for authoring the new grammar

7.9 1.4.1

Released 2018.05.31

• Fix: Checked for failed import of AF_UNIX to improve Windows support

• Fix: Required latest pure-sasl

7.10 1.4.0

Released 2018.05.29

• Validation updates:

– Added LDAP.disable_validation() which creates a context with any or all validators skipped

– Added an ldap_conn attribute to validator instances to allow validators to query the server

7.6. 1.5.3 33

laurelin Documentation, Release 2.0.4

– Allowed passing a class as well as an instance with the validators constructor keyword

• Greatly improved handling of unsolcitied messages (message ID 0)

• Fix: enforce maximum length for attribute types

• Fix: SASL auth issues with pure-sasl 0.5.1+

7.11 1.3.1

Released 2018.04.01

• Fixed logic bug in SchemaValidator when an object has two or more object classes that require one or
more of the same attributes

• Fixed: allowed string some.module.Class specification for validators in config files

7.12 1.3.0

Released 2018.03.22

• Added config file support, see laurelin.ldap.config

• Fixed: ensured extensions can be safely activated multiple times

• Fixed: Mod constants repr updated for consistency

7.13 1.2.0

Released 2018.03.16

• Add DELETE_ALL to use as an attribute value list with modify, replace_attrs, and delete_attrs

• Added new constructor keywords to alter the behavior of empty value lists for modify, replace_attrs, and
delete_attrs:

– ignore_empty_list to silently ignore empty value lists and not send them to the server. This will be
enabled by default in a future release.

– error_empty_list to raise an exception when an empty value list is passed.

– warn_empty_list to emit a warning when an empty value list is passed.

7.14 1.1.0

Released 2018.03.12

Initial stable API.

34 Chapter 7. Changelog

CHAPTER 8

Reference

8.1 laurelin package

8.1.1 Subpackages

8.1.1.1 laurelin.extensions package

Submodules

laurelin.extensions.base_schema module

laurelin.extensions.descattrs module

laurelin.extensions.netgroups module

laurelin.extensions.pagedresults module

Module contents

8.1.1.2 laurelin.ldap package

Submodules

laurelin.ldap.base module

laurelin.ldap.config module

35

laurelin Documentation, Release 2.0.4

laurelin.ldap.exceptions module

exception laurelin.ldap.exceptions.Abandon
Bases: Exception

Can be raised to cleanly exit a context manager and abandon unread results

exception laurelin.ldap.exceptions.ConnectionAlreadyBound
Bases: laurelin.ldap.exceptions.InvalidBindState

Only raised by LDAP.*Bind methods if the connection is already bound when called

exception laurelin.ldap.exceptions.ConnectionUnbound
Bases: laurelin.ldap.exceptions.InvalidBindState

Raised when any server operation is attempted after a connection is unbound/closed

exception laurelin.ldap.exceptions.InvalidBindState
Bases: laurelin.ldap.exceptions.LDAPError

Base class for exceptions related to bind state

exception laurelin.ldap.exceptions.InvalidSyntaxError
Bases: laurelin.ldap.exceptions.LDAPValidationError

Raised when syntax validation fails

exception laurelin.ldap.exceptions.LDAPConnectionError
Bases: laurelin.ldap.exceptions.LDAPError

Error occurred creating connection to the LDAP server

exception laurelin.ldap.exceptions.LDAPError
Bases: Exception

Base class for all exceptions raised by laurelin

exception laurelin.ldap.exceptions.LDAPExtensionError
Bases: laurelin.ldap.exceptions.LDAPError

Error occurred setting up an extension module

exception laurelin.ldap.exceptions.LDAPSASLError
Bases: laurelin.ldap.exceptions.LDAPError

Error occurred involving the SASL client

exception laurelin.ldap.exceptions.LDAPSchemaError
Bases: laurelin.ldap.exceptions.LDAPError

Error relating to setting up the LDAP schema

exception laurelin.ldap.exceptions.LDAPSupportError
Bases: laurelin.ldap.exceptions.LDAPError

A feature is not supported by the server

exception laurelin.ldap.exceptions.LDAPTransactionError
Bases: laurelin.ldap.exceptions.LDAPError

Raised by actions not included in a modify transaction

exception laurelin.ldap.exceptions.LDAPUnicodeWarning
Bases: laurelin.ldap.exceptions.LDAPWarning, UnicodeWarning

Warning category for unicode issues relating to LDAP

36 Chapter 8. Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#UnicodeWarning

laurelin Documentation, Release 2.0.4

exception laurelin.ldap.exceptions.LDAPUnsolicitedMessage(lm, exc_msg)
Bases: Exception

Raised when a message with ID 0 is returned from the server

This may indicate an incompatability between laurelin and your server distribution and thus is outside the normal
exception inheritance chain.

exception laurelin.ldap.exceptions.LDAPValidationError
Bases: laurelin.ldap.exceptions.LDAPError

Raised when validation fails

exception laurelin.ldap.exceptions.LDAPWarning
Bases: Warning

Generic LDAP warning category

exception laurelin.ldap.exceptions.MultipleSearchResults
Bases: laurelin.ldap.exceptions.UnexpectedSearchResults

Got multiple search results when exactly one was required

exception laurelin.ldap.exceptions.NoSearchResults
Bases: laurelin.ldap.exceptions.UnexpectedSearchResults

Got no search results when one or more was required

exception laurelin.ldap.exceptions.ProhibitedCharacterError
Bases: laurelin.ldap.exceptions.LDAPError

Raised when a prohibited character is detected in RFC4518 string prep

exception laurelin.ldap.exceptions.TagError
Bases: laurelin.ldap.exceptions.LDAPError

Error with an object tag

exception laurelin.ldap.exceptions.UnexpectedResponseType
Bases: laurelin.ldap.exceptions.LDAPError

The response did not contain the expected protocol operation

exception laurelin.ldap.exceptions.UnexpectedSearchResults
Bases: laurelin.ldap.exceptions.LDAPError

Base class for unhandled search result situations

laurelin.ldap.ldapobject module

laurelin.ldap.protoutils module

Module contents

8.1.2 Module contents

8.1. laurelin package 37

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Warning

laurelin Documentation, Release 2.0.4

38 Chapter 8. Reference

CHAPTER 9

Laurelin OID Space

Laurelin IANA Registered Private Enterprise Number:

1.3.6.1.4.1.53450

Any OID with this prefix that is not explicitly mentioned in this document should be considered unstable and not used
for any purpose.

9.1 Namespaces

OID Prefix: 1.3.6.1.4.1.53450

OID Suffix Description
.1 LDAP
.1.1 Controls
.1.2 Extensions
.1.3 Syntax rules
.1.4 Matching rules
.1.5 Attribute types
.1.6 Object classes

9.2 Objects

None currently assigned.

39

laurelin Documentation, Release 2.0.4

40 Chapter 9. Laurelin OID Space

CHAPTER 10

Testing Setup

Warning: Testing has been moved to docker using public images. Check .travis.yml for details. This page
is maintained for historical documentation purposes.

10.1 System

• Digital Ocean VPS with Debian 7.9

• OpenLDAP 2.4.31

• Cyrus SASL 2.1.25

• 389 Directory Server 1.3.6

10.2 SASL

10.2.1 SASL config ldif

dn: cn=config
changetype: modify
replace: olcAuthzRegexp
olcAuthzRegexp: uid=([^,]+),.* cn=$1,dc=example,dc=org
-
add: olcSaslAuxprops
olcSaslAuxprops: sasldb
-
add: olcSaslRealm
olcSaslRealm: example.org
-
add: olcSaslHost

(continues on next page)

41

laurelin Documentation, Release 2.0.4

(continued from previous page)

olcSaslHost: example.org
-

10.2.2 Adding sasl user password with

saslpasswd2 -u example.org -c $USER

10.2.3 SASL auth control test case

% ldapwhoami -Y DIGEST-MD5 -U admin -H ldap://127.0.0.1
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: admin
SASL SSF: 128
SASL data security layer installed.
dn:cn=admin,dc=example,dc=org

10.3 LDAPS/StartTLS

• Certs set up following this Stack Overflow answer.

• Configured OpenLDAP as follows:

dn: cn=config
changetype: modify
replace: olcTLSCertificateKeyFile
olcTLSCertificateKeyFile: /certs/serverkey.pem
-
replace: olcTLSCertificateFile
olcTLSCertificateFile: /certs/servercert.pem
-
replace: olcTLSCACertificateFile
olcTLSCACertificateFile: /certs/cacert.pem

• Added ldaps://127.0.0.1:636 to SLAPD_SERVICES in /etc/default/slapd

42 Chapter 10. Testing Setup

http://stackoverflow.com/a/21340898/94077

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

43

laurelin Documentation, Release 2.0.4

44 Chapter 11. Indices and tables

Python Module Index

l
laurelin, 37
laurelin.extensions, 35
laurelin.ldap.exceptions, 36

45

laurelin Documentation, Release 2.0.4

46 Python Module Index

Index

A
Abandon, 36

C
ConnectionAlreadyBound, 36
ConnectionUnbound, 36

I
InvalidBindState, 36
InvalidSyntaxError, 36

L
laurelin (module), 37
laurelin.extensions (module), 35
laurelin.ldap.exceptions (module), 36
LDAPConnectionError, 36
LDAPError, 36
LDAPExtensionError, 36
LDAPSASLError, 36
LDAPSchemaError, 36
LDAPSupportError, 36
LDAPTransactionError, 36
LDAPUnicodeWarning, 36
LDAPUnsolicitedMessage, 36
LDAPValidationError, 37
LDAPWarning, 37

M
MultipleSearchResults, 37

N
NoSearchResults, 37

P
ProhibitedCharacterError, 37

T
TagError, 37

U
UnexpectedResponseType, 37
UnexpectedSearchResults, 37

47

	User Docs
	Features Overview
	Missing/incomplete features
	Walkthrough
	Navigating
	Getting Started
	LDAP Methods Intro
	LDAPObject Methods Intro

	Relative Searching
	Attributes Dictionaries
	Modify Operations
	Raw modify methods
	Strict modification and higher-level modify functions

	Global Defaults, LDAP instance attributes, and LDAP constructor arguments
	Basic usage examples
	1. Connect to local LDAP instance and iterate all objects

	Simple Search Filters
	Extensions
	Laurelin Extensions
	LDAP Extensions
	LDAPObject Extensions

	Config Files
	Intro
	Global Section
	Extensions Section
	Connection Section
	Objects Section
	Global vs. Connection
	Load Order
	Using Dicts Directly

	Creating Extensions
	Extension System
	Extension Classes
	Schema and Controls Classes
	Depending on Extensions
	Publishing Extensions

	LDAP Extensions
	Controls
	Schema
	Object Classes and Attribute Types
	Matching Rules
	Syntax Rules
	Schema/Controls Registration System

	OIDs
	Validators
	SchemaValidator

	Class Diagram

	Controls
	Using Controls
	Defining Controls

	Changelog
	2.0.4
	2.0.3
	2.0.2
	2.0.1
	2.0.0
	1.5.3
	1.5.2
	1.5.0
	1.4.1
	1.4.0
	1.3.1
	1.3.0
	1.2.0
	1.1.0

	Reference
	laurelin package
	Subpackages
	laurelin.extensions package
	laurelin.ldap package

	Module contents

	Laurelin OID Space
	Namespaces
	Objects

	Testing Setup
	System
	SASL
	SASL config ldif
	Adding sasl user password with
	SASL auth control test case

	LDAPS/StartTLS

	Indices and tables
	Python Module Index
	Index

